DOI QR코드

DOI QR Code

Stress Corrosion Cracking of Alloy 600 in an Aqueous Solution Containing Lead Oxide

  • Kim, Dong-Jin (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Hong-Pyo (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Hwang, Seong-Sik (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Joung-Soo (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Park, Jang-Yul (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
  • Received : 2008.11.20
  • Accepted : 2009.06.26
  • Published : 2010.04.01

Abstract

The stress corrosion cracking (SCC) behavior of Alloy 600 was studied in aqueous solutions containing lead. Electrochemical polarization and current transient experiments were performed at $315^{\circ}C$ in a 40% sodium hydroxide solution to assess the effect of lead on a passive film formed on Alloy 600. The influences of the alloy microstructure and the addition of an inhibitor to the environments on lead-induced SCC were investigated using C-ring and slow strain-rate tensile (SSRT) tests in demineralized high-purity water and caustic solutions containing PbO at $315^{\circ}C$. The surface films on Alloy 600 were examined using Auger electron spectroscopy (AES) and energy dispersive x-ray spectroscopy (EDXS). The PbO markedly accelerated SCC of Alloy 600 in the caustic solution and the high-purity water at $315^{\circ}C$. The addition of nickel boride (NiB) or cerium boride ($CeB_6$) to the test solutions decreased the susceptibility of Alloy 600 to SCC. Thermally treated Alloy 600 (Alloy 600 TT) tended to crack in a transgranular mode, while the solution-annealed Alloy 600 (Alloy 600 SA) tended to crack in an intergranular mode in water containing PbO.

Keywords

References

  1. H. Coriou, L. Grall, Y. Legall, and S. Vettier, Third Metallurgy Symposium on Corrosion, North Holland Publishing Co., Amsterdam (1960).
  2. D. R. Diercks, W. J. Shack, and J. Muscara, Nucl. Eng. Design. 194, 19 (1999). https://doi.org/10.1016/S0029-5493(99)00167-3
  3. R. W. Staehle, Proc. 11th International Symposium on Environmental Degradation of Metals in Nuclear Power Systems-Water Reactors, p. 381, Stevenson, Washington (2003).
  4. D.-J. Kim, H. C. Kwon, M. A. Kim, J. S. Kim, S. S. Hwang, J. Park, and H. P. Kim, Proc. EUROCORR 2008, p. 257, Edinburgh, England (2008).
  5. P. M. Scott and P. Combrade, Proc. 8th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, p. 65, Amelia Island, Florida (1997).
  6. Y. S. Yi, S. H. Eom, H. P. Kim, and J. S. Kim, J. Nucl. Mat. 347, 151 (2005). https://doi.org/10.1016/j.jnucmat.2005.08.011
  7. J. Lumsden and G. Pollock, Workshop on Effects of Pb and S on the Performance of Secondary Side Tubing of Steam Generators in PWRs, ANL, Illinois (2005).
  8. T. P. Moffat and R. M. Latanision, J. Electrochem. Soc. 139, 1869 (1992). https://doi.org/10.1149/1.2069514
  9. D.-J. Kim, H.C. Kwon, and H. P. Kim, Corros. Sci. 50, 1221 (2008). https://doi.org/10.1016/j.corsci.2008.01.008
  10. B. P. Miglin and J. M. Sarver, EPRI report, NP-7367-S, Palo Alto (1991).
  11. D.-J. Kim, Y. S. Lim, H. C. Kwon, S. S. Hwang and H. P. Kim, J. Nanosci. Nanotech 10, 85 (2010). https://doi.org/10.1166/jnn.2010.1530
  12. M. Helie, Proc. 6th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, p. 179, San Diego, CA (1993).
  13. T. Sakai, K. Aoki, T. Shigemitsu, and Y. Kishi, Corrosion 48, 734 (1992). https://doi.org/10.5006/1.3315994
  14. H. Takamatsu, T. Matsunaga, B. P. Miglin, J. M. Sarver, P. A. Sherburne, K. Aoki, and T. Sakai, Proc. 8th International Symposium on Environmental Degradation of Metals in Nuclear Power Systems-Water Reactors, p. 216, Amelia Island, Florida (1997).
  15. Y. S. Lim, J. S. Kim, H. P. Kim, and H. D. Cho, J. Nucl. Mater. 335, 108 (2004). https://doi.org/10.1016/j.jnucmat.2004.07.038
  16. S. S. Hwang, H. P. Kim, Y. S. Lim, J. S. Kim, and L. Thomas, Corros. Sci. 49, 3797 (2007). https://doi.org/10.1016/j.corsci.2007.03.040
  17. D. H. Hur, J. S. Kim, J. S. Baek, and J. G. Kim, Corrosion 58, 1031 (2002). https://doi.org/10.5006/1.3280792
  18. S. S. Hwang, U. C. Kim, and Y. S. Park, J. Nucl. Mater. 246, 77 (1997). https://doi.org/10.1016/S0022-3115(97)00023-8

Cited by

  1. Oxide properties and stress corrosion cracking behaviour for Alloy 600 in leaded caustic solutions at high temperature vol.53, pp.4, 2011, https://doi.org/10.1016/j.corsci.2010.12.016
  2. SUSCEPTIBILITY OF ALLOY 690 TO STRESS CORROSION CRACKING IN CAUSTIC AQUEOUS SOLUTIONS vol.45, pp.1, 2013, https://doi.org/10.5516/net.07.2012.021
  3. Ex situ and in situ characterization of stress corrosion cracking of nickel-base alloys at high temperature vol.18, pp.2, 2010, https://doi.org/10.1007/s10008-013-2248-3
  4. Effect of residual stress relaxation by means of local rapid induction heating on stress corrosion cracking behavior and electrochemical characterization of welded Ti-6Al-4V alloy under slow strain ra vol.23, pp.3, 2010, https://doi.org/10.1007/s12540-017-6628-6
  5. Application of Electrochemical Noise to Investigate Role of Microstructural Evolution on Inhibiting Stress Corrosion Cracking of Ti-6Al-4V Weldment vol.27, pp.12, 2021, https://doi.org/10.1007/s12540-020-00799-2