DOI QR코드

DOI QR Code

Intergranular Cracking Susceptibility of 2.25Cr1.3W and 9Cr1MoVNb Weld Metals at Elevated Temperatures

  • Chang, J.C. (KEPCO Research Institute) ;
  • Heo, N.H. (KEPCO Research Institute) ;
  • Lee, C.H. (Div. of Mater. Sci. and Eng., Hanyang Univ.)
  • Received : 2010.02.11
  • Accepted : 2010.09.30
  • Published : 2010.12.01

Abstract

The difference in elevated temperature fracture behaviors of 2.25Cr1.3W (P23) and 9Cr1MoVNb (P91) steels has been investigated through simple rupture tests. P91 showed a ductile fracture behavior in the test conditions. This is due to the strong grain boundary strengthening effect of segregated molybdenum. The intergranular fracture behavior observed only in P23 is due to the strong segregation of impurities (especially, phosphorus) and the decrease in bulk content of the grain boundary strengthener, tungsten, which arises from the formation of precipitates containing tungsten.

Keywords

References

  1. T. Muraki, Y. Hasegawa, and M. Ohgami, Key Eng. Mat. 171-174, 499 (2000).
  2. H. Kushima, K. Kimura, and F. Abe, Testu-to-Hagane 85, 841(1999).
  3. H. Danielson and J. Hald, Proc. 4th EPRI Int. Conf. Adv. Mater. Tech. Fossil Power Plants, EPRI, Palo Alto, CA (2004).
  4. A. Strang, J. Cawley, and G. W. Greenwood, Microstructure of High Temperature Materials, No. 2, The Institute of Materials (1998).
  5. N. Komai and T. Imazato, Proc. 8th Liege Conf. Mater. Adv. Power Eng. Part II, p. 997 (2006).
  6. T. Muraki, Y. Hasegawa, M. Ohgami, T. Muraki, Y. Hasegawa, and M. Ohgami, Key Eng. Mater. 171-174, 504 (2000).
  7. S. H. Ryu, M. S. Kim, Y. S. Lee, J. T. Kim, and J. Yu, J. Kor. Inst. Met and Mater. 43, 874 (2005).
  8. M. Nakashiro, S. Kihara, Y. Tumita, and I. Kajigaya, J. Soc. Mat. Sci. Jpn. 43, 203 (1994). https://doi.org/10.2472/jsms.43.203
  9. R. Viswanathan and J. Foulds, Trans. ASME J. Pressure Vessel Tech. 120, 105 (1998). https://doi.org/10.1115/1.2842227
  10. N. H. Heo, J. C. Chang, K. B. Yoo, J. K. Lee, and J. Kim, Mater. Sci. Eng. A, in press (2010).
  11. N. T. Barrett, The Principles of Engineering Materials (1973).
  12. J. Weertman and J. R. Weertman, Elementary Dislocation Theory (1971).
  13. W. C. Leslie, Met. Trans. 3, 5 (1972). https://doi.org/10.1007/BF02680580
  14. H. Conrad, Iron and Its Dilute Solid Solutions, Interscience, New York (1961).
  15. W. C. Leslie, The Physical Metallurgy of Steels, International Student Edition (1982).
  16. G. R. Speich, A. S. Schwoeblem, and W. C. Leslie, Met. Trans. 13, 2031 (1972).
  17. N. J. Grant, Utilization of Heat Resistant Alloys, ASM (1954).
  18. M. P. Seah, Surf. Sci. 53, 168 (1975). https://doi.org/10.1016/0039-6028(75)90124-7
  19. D. McLean, Grain Boundaries in Metals, Oxford University Press, London (1957).
  20. M. Guttmann, Surf. Sci. 53, 213 (1975). https://doi.org/10.1016/0039-6028(75)90125-9
  21. C. L. Briant and R. P. Messmer, Phil. Mag. 42B, 569 (1980).
  22. H. J. Grabke, Steel Res. 57, 178 (1986).
  23. H. Erhart and H. J. Grabke, Metal Sci. 15, 401 (1981).
  24. M. P. Seah, Acta metall. 28, 955 (1980). https://doi.org/10.1016/0001-6160(80)90112-1
  25. W. T. Geng, A. J. Freeman, and G. B. Olson, Solid State Commun. 119, 585 (2001). https://doi.org/10.1016/S0038-1098(01)00298-8
  26. D. Y. Lee, E. V. Barrera, J. P. Stark, and H. L. Marcus, Metall. Trans. A 15, 1415 (1984). https://doi.org/10.1007/BF02648571

Cited by

  1. Stress Relief Cracking on the Weld of T/P 23 Steel vol.10, pp.None, 2010, https://doi.org/10.1016/j.proeng.2011.04.122
  2. Post-weld heat treatment cracking susceptibility of T23 weld metals for fossil fuel applications vol.34, pp.None, 2010, https://doi.org/10.1016/j.matdes.2011.05.029
  3. 보일러용 T23/T91 이종용접부의 탄소이동에 관한 연구 vol.27, pp.6, 2010, https://doi.org/10.12656/jksht.2014.27.6.288
  4. On-Site Corrosion Behavior of Water-Treated Boiler Tube Steel vol.45, pp.3, 2015, https://doi.org/10.9729/am.2015.45.3.177
  5. Effect of Austenite-to-Ferrite Phase Transformation at Grain Boundaries on PWHT Cracking Susceptibility in CGHAZ of T23 Steel vol.8, pp.6, 2010, https://doi.org/10.3390/met8060416
  6. Microstructural Characteristics and m23c6 Precipitate Behavior of the Course-Grained Heat-Affected Zone of T23 Steel without Post-Weld Heat Treatment vol.8, pp.3, 2010, https://doi.org/10.3390/met8030170