Analysis, Design and Construction of Curved Composite Girder Bridges: State-of-the-Art

  • Lin, Weiwei (Department of Civil and Environmental Engineering, Waseda University) ;
  • Yoda, Teruhiko (Department of Civil and Environmental Engineering, Waseda University)
  • Published : 2010.09.30

Abstract

The horizontally curved composite girder bridges have excellent properties, such as quick construction, good seismic performance, saving construction formwork and convenience in spatial arrangement.etc, which have greatly promoted the application of such bridges. The objective of this paper is to provide and summarize important references related to the analysis, design and construction of curved composite girder bridges. Subjects discussed in this review include (1) different curved girder bridge configurations and their applied range; (2) current specifications; (3) construction issues; (4) design methods; (5) analytical methods; (6) load distribution; (7) torsional behavior; (8) warping stresses; (9) stability; (10) ultimate load-carrying capacity; (11) dynamic and seismic response; (12) loading test; (13) long-term behavior; and (14) design details. The literature survey presented herein mainly focuses on papers written in English, Japanese and Chinese in relation to curved composite girders.

Keywords

Acknowledgement

Supported by : China Scholarship Council

References

  1. AASHTO (1993). AASHTO Guide specifications for horizontally curved steel girder highway bridges. American Association of State Highway and Transportation Officials, Washington, DC.
  2. AASHTO (1996). AASHTO Guide specifications for horizontally curved steel girder highway bridges, American Association of State Highway and Transportation Officials, Washington, DC.
  3. AASHTO (2003). AASHTO Guide specifications for horizontally curved steel girder highway bridges. American Association of State Highway and Transportation Officials, Washington, DC.
  4. AASHTO (2004). AASHTO LRFD Bridge Design Specifications, 3rd Edition with 2005 Interims. American Association of State Highway and Transportation Officials, Washington, DC.
  5. Abrahams, M. J. (2010). ''Discussion of 'Live load radial moment distribution for horizontally curved bridges' by Woo Seok Kim, Jeffrey A. Laman, and Daniel G. Linzell.'' Journal of Bridge Engineering, ASCE, 15(2), pp. 214-214.
  6. Akesson, B. (2008). Understanding bridge collapses. CRC Press, London, UK.
  7. Arizumi, Y., Oshiro, T., and Hamada, S. (1982). ''Finite strip analysis of curved composite girders with incomplete interaction.'' Computers & Structures, 15(6), pp. 603- 612. https://doi.org/10.1016/S0045-7949(82)80001-1
  8. Arizumi, Y., Hamada, S., and Oshiro, T. (1987). ''Experimental and analytical studies on behavior of curved composite box girders.'' Bulletin of the Faculty of Engineering,University of the Ryukyus. No. 34, pp. 175- 195.
  9. Arizumi, Y., Hamada, S., and Oshiro, T. (1988). ''Behavior study of curved composite box girders.'' Journal of Structural Engineering, ASCE, 114(11), pp. 2555-2573. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:11(2555)
  10. Barr, P. J., Yanadori, N., Halling, M. W., and Womack, K. C. (2007). ''Live-load analysis of a curved I-girder bridge.'' Journal of Bridge Engineering, ASCE, 12(4), pp. 477- 484. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:4(477)
  11. Basher, M. A., Shanmugam, N. E., and Rashid, A. K. A. (2007). ''Horizontally curved composite plate girders.'' 5th International Conference on Current and Future Trends in Bridge Design, Construction and Maintenance, Beijing, China, pp. 282-292.
  12. Basher, M. A., Shanmugam, N. E., and Khalim, A. R. (2009). ''Web openings in horizontally curved composite plate girders.'' Journal of Constructional Steel Research, 65(8-9), pp. 1694-1704. https://doi.org/10.1016/j.jcsr.2009.02.009
  13. Bell, B. J. and Linzell, D. G. (2007). ''Erection procedure effects on deformations and stresses in a large-radius, horizontally curved, I-girder bridge.'' Journal of Bridge Engineering, ASCE, 12(4), pp. 467-476. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:4(467)
  14. Bradford, M. A., Uy, B., and Pi, Y. (2001). ''Behaviour of unpropped composite girders curved in plan under construction loading.'' Engineering Structures, 23(7), pp. 779-789. https://doi.org/10.1016/S0141-0296(00)00097-3
  15. Chang, C. J. and White, D. W. (2008). ''An assessment of modeling strategies for composite curved steel I-girder bridges.'' Engineering Structures, 30(11), pp. 2991-3002. https://doi.org/10.1016/j.engstruct.2008.04.011
  16. Cheung, M. S. and Foo, S. H. C. (1995). ''Design of horizontally curved composite box-girder bridges-a simplified approach.'' Canadian Journal of Civil Engineering, 22(1), pp. 93-105.
  17. Choi, B. H. and Yoo, C. H. (2005). ''Strength of stiffened flanges in horizontally curved box girders.'' Journal of Engineering Mechanics, 131(2), pp. 167-176. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:2(167)
  18. Colville, J. (1973). ''Tests of curved steel-concrete composite beams.'' Journal of the Structural Division, ASCE, 99(7), pp. 1555-1570.
  19. Conrad, P. and Heins, Jr. (1972). ''Curved girder bridge analysis.'' Computers & Structures, 2(5-6), pp. 785-797. https://doi.org/10.1016/0045-7949(72)90038-7
  20. Davidson, J. S. and Yoo, C. H. (1997). ''Cross-frame spacing and parametric effects in horizontally curved I-girder bridges.'' Journal of Structural Engineering, ASCE, 122(9), pp. 1089-1096.
  21. Davidson, J. S., Ballance, S. R., and Yoo, C. H. (1999a). ''Analytical model of curved I-girder web panels subjected to bending.'' Journal of Bridge Engineering, ASCE, 4(3), pp. 204-212. https://doi.org/10.1061/(ASCE)1084-0702(1999)4:3(204)
  22. Davidson, J. S., Ballance, S. R., and Yoo, C. H. (1999b). ''Finite displacement behavior of curved I-girder webs subjected to bending.'' Journal of Bridge Engineering, ASCE, 4(3), pp. 213-220. https://doi.org/10.1061/(ASCE)1084-0702(1999)4:3(213)
  23. Davidson, J. S. and Yoo, C. H. (2000a). ''Evaluation of strength formulations for horizontally curved flexural member.'' Journal of Bridge Engineering, ASCE, 5(3), pp. 200-207. https://doi.org/10.1061/(ASCE)1084-0702(2000)5:3(200)
  24. Davidson, J. S., Ballance, S. R., and Yoo, C. H. (2000b). ''Behavior of curved I-girder webs subjected to combined bending and shear.'' Journal of Bridge Engineering, ASCE, 5(2), pp. 165-170. https://doi.org/10.1061/(ASCE)1084-0702(2000)5:2(165)
  25. Davidson, J. S., Ballance, S. R., and Yoo, C. H. (2000c). ''Effects of longitudinal stiffeners on curved I-girder webs.'' Journal of Bridge Engineering, ASCE, 5(2), pp. 171-178. https://doi.org/10.1061/(ASCE)1084-0702(2000)5:2(171)
  26. Davidson, J. S., Abdalla, R. S., and Madhavan, M. (2002). Design and construction of modern curved bridges. Technical Report, University Transportation Center for Alabama.
  27. DePolo, D. S. and Linzell, D. G. (2008). ''Evaluation of liveload lateral flange bending distribution for a horizontally curved I-girder bridge.'' Journal of Bridge Engineering, ASCE, 13(5), pp. 501-510. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:5(501)
  28. Dong, J. and Sause, R. (2010a). ''Behavior of hollow tubular-flange girder systems for curved bridges.'' Journal of Structural Engineering, ASCE, 136(2), pp. 174-182. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000092
  29. Dong, J. and Sause, R. (2010b). ''Finite element analysis of curved steel girders with tubular flanges.'' Engineering Structures, 32(1), pp. 319-327. https://doi.org/10.1016/j.engstruct.2009.09.018
  30. El-Tawil, S. and Okeil, A. M. (2002). Behavior and design of curved composite box girder bridges. Technical Report, University of Central Florida.
  31. Erkmen, R. E. and Bradford, M. A. (2009). ''Nonlinear elastic analysis of composite beams curved in-plan.'' Engineering Structures, 31(7), pp. 1613-1624. https://doi.org/10.1016/j.engstruct.2009.02.016
  32. Galambos, T. V., Hajjar, J. F., Huang, W., Pulver, B. E., Leon, R. T., and Rudie, B. J. (2000). ''Comparison of measured and computed stresses in a steel curved girder bridge.'' Journal of Bridge Engineering, ASCE, 5(3), pp. 191-199. https://doi.org/10.1061/(ASCE)1084-0702(2000)5:3(191)
  33. Galdos, N. H. (1988). A theoretical investigation of the dynamic behavior of horizontally curved steel box-girder bridges under truck loadings. PhD thesis, University of Maryland at College Park.
  34. Galdos, N. H., Schelling, D. R., and Sahin, M. A. (1993). ''Methodology for impact factor of horizontally curved box bridges.'' Journal of Structural Engineering, ASCE, 119(6), pp. 1917-1934. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1917)
  35. Giussani, M. and Mola, F. (2006). ''Service-stage analysis of curved composite steel-concrete bridge beams.'' Journal of Structural Engineering, ASCE, 12(1), pp. 1928-1939.
  36. Giussani, F. and Mola, F. (2009). ''Thin-walled composite steel-concrete beams subjected to skew bending and torsion.'' Steel & Composite Structures, 9(3), pp. 275- 301. https://doi.org/10.12989/scs.2009.9.3.275
  37. Guo, Z. J., Xiao, H. Z., and Zhang. Q. (2006). ''Superstructure design of Beijing Subway Line 5 composite continuous box-girder bridge.'' Chinese Journal of Railway Standard Design, No 2, pp. 41-42.
  38. Hajjar, J. F., Krzmarzick, D., and Pallarés, P. (2010). ''Measured behavior of a curved composite I-girder bridge.'' Journal of Constructional Steel Research, 66(3), pp. 351-368. https://doi.org/10.1016/j.jcsr.2009.10.001
  39. Hall, D. H., Grubb, M. A., and Yoo, C. H. (1999). Improved Design Specifications for Horizontally Curved Steel Girder Highway Bridges. Report No. 424, NCHRP Project 12-38 Final Report, Transportation Research Board, NRC, Washington, DC.
  40. Han, K., Kim, S., and Kang, Y. (2004). ''Lessons from the collapsed bridge in Sindong interchange.'' 2004 Pacific Structural Proceedings Steel Conference. Long Beach California, pp. 2-6.
  41. Hanshin Expressway Public Corporation (1988). Guidelines for the design of horizontally curved girder bridges (draft). The Hanshin Expressway Public Corporation, Japan.
  42. Harada, M. (1993). ''On the basic equation of the curved composite beam.'' Summaries of technical papers of Annual Meeting Architectural Institute of Japan. B, Structures I, pp. 1187-1188.
  43. Harada, M. (1997). ''Mounted Stresses in the curved composite beam.'' Summaries of technical papers of Annual Meeting Architectural Institute of Japan. C-1, Structures III, pp. 387-388.
  44. Heins, C. P. and Oleinik, J. C. (1976). ''Curved box beam bridge analysis.'' Computers & Structures, 6(2), pp. 65- 73. https://doi.org/10.1016/0045-7949(76)90054-7
  45. Heins, C. P. (1978). ''Box girder bridge design state-of-theart.'' AISC Engineering Journal, 15(4), pp. 126-142.
  46. Heins, C. P. and Sheu, F. H. (1982). ''Design/analysis of curved box girder bridges.'' Computers & Structures, 15(3), pp. 241-258. https://doi.org/10.1016/0045-7949(82)90016-5
  47. Hu, S. W. (2004). "Torsional analysis and design of composite steel-concrete beams." China Communication Press, Beijing.
  48. Hu, S. W., Nie, J. G., and Zhu, L. S. (2005). ''Nonlinear analysis of composite steel-concrete beams under combined flexure and torsion.'' Chinese Journal of Engineering mechanics, 22(2), pp. 1-5.
  49. Hu, S. W. and Nie, J. G. (2006). ''Experimental study on composite steel-concrete beams with box sections under combined bending and torsion.'' Chinese Journal of Building Structure, 36(8), pp. 54-59.
  50. Hu, S. W., Chen, Y. P., and Nie, J. G. (2007). ''Analysis on torsional stiffness for composite steel-concrete beams.'' Chinese Journal of Steel Conctruction, 22(101), pp. 17- 20.
  51. Huang, D. Z., Wang, T., and Shahawy, N. (1995). ''Dynamic behavior of horizontally curved I-girder bridges.'' Computers & Structures, 57(4), pp. 703-714. https://doi.org/10.1016/0045-7949(95)00061-K
  52. Huang, D. Z. (2001). ''Dynamic analysis of steel curved box girder bridges.'' Journal of Bridge Engineering, ASCE, 6(6), pp. 506-513. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:6(506)
  53. Huang, D. Z. (2005). ''Discussion of 'Warping stresses in curved box girder bridges: case study' by Ayman M. Okeil and Sherif El-Tawil.'' Journal of Structural Engineering, ASCE, 10(6), pp. 758-758.
  54. Huang, D. Z. (2006). ''Discussion of 'Impact Factors for Horizontally Curved Composite Box Girder Bridges' by Khaled M. Sennah, Xuesheng Zhang, and John B. Kennedy.'' Journal of Structural Engineering, ASCE, 11(3), pp. 378-379.
  55. Huang, D. Z. (2008a). ''Dynamic loading of curved steel box girder bridge due to moving vehicle.'' Structural Engineering International, 18(4), pp. 365-372. https://doi.org/10.2749/101686608786455171
  56. Huang, D. Z. (2008b). ''Full-scale test and analysis of a curved steel-box girder bridge.'' Journal of Bridge Engineering, ASCE, 13(5), pp. 492-500. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:5(492)
  57. Julian, F. R., Hayashikawa, T., and Obata, T. (2007). ''Seismic performance of isolated curved steel viaducts equipped with deck unseating prevention cable restrainers.'' Journal of Construction Research, 63(2), pp. 237-253. https://doi.org/10.1016/j.jcsr.2006.03.008
  58. Jung, S. K., White, D. W., Besliah, F., and Wright, W. (2005). ''Ultimate strength of horizontally curved composite I-girder bridge structural systems.'' Proc. 2005 Annual Stability Conference, Structural Stability Research Council, pp. 327-347.
  59. Jung, S. (2006). ''Inelastic strength behavior of horizontally curved composite I-girder bridge structural systems.'' Dissertation, Georgia Institute of Technology.
  60. Kim, C. and White, S. R. (1997). ''Thick-walled composite beam theory including 3-d elastic effects and torsional warping.'' International Journal of Solids and Structures, 34 (31-32), pp. 4237-4259. https://doi.org/10.1016/S0020-7683(96)00072-8
  61. Kim, K. and Yoo, C. H. (2006a). ''Effects of external bracing on horizontally curved box girder bridges during construction.'' Engineering Structures, 28(12), pp. 1650- 1657. https://doi.org/10.1016/j.engstruct.2006.03.001
  62. Kim, K. and Yoo, C. H. (2006b). ''Ultimate strength interaction of bending and torsion of steel/concrete composite trapezoidal box girders in positive bending.'' Advances in Structural Engineering, 9(5), pp. 707-718. https://doi.org/10.1260/136943306778827529
  63. Kim, W. S., Laman, J. A., and Linzell, D. G. (2007). ''Live load radial moment distribution for horizontally curved bridges.'' Journal of Bridge Engineering, ASCE, 12(6), pp. 727-736. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:6(727)
  64. Kim, W. S., Laman, J. A., and Linzell, D. G. (2010). ''Closure to 'Live load radial moment distribution for horizontally curved bridges' by Woo Seok Kim, Jeffrey A. Laman, and Daniel G. Linzell.'' Journal of Bridge Engineering, ASCE, 15(2), pp. 214-214.
  65. Krzmarzick, D. and Hajjar, J. F. (2006). Load Rating of Composite Steel Curved I-Girder Bridges through Load Testing with Heavy Trucks. Report No. MN/RC-2006-40, Minnesota Department of Transportation, St. Paul, Minnesota, USA.
  66. Lee, G. (2000). ''Load distribution of curved composite concrete deck steel I-girder bridge at construction phase.'' 2000 Annual Conference Abstracts-Canadian Society for Civil Engineering, pp. 210.
  67. Lee, G. C. M., Sennah, K. M., and Kennedy, J. B. (2002). ''Curved steel box-girder bridges at construction phase.'' Proc. the third International Conference on Advances in Steel Structures, Hong Kong, China, pp. 807-814.
  68. Lee, Y. H., Sung, W. J., Lee, T. H., and Seong. K. W. (2007). ''Finite element formulation of a composite double Tbeam subjected to torsion.'' Engineering Structures, 29(11), pp. 2935-2945. https://doi.org/10.1016/j.engstruct.2007.02.002
  69. Lei, Z. X., Yan, X. W., and Dong. S. S. (2008). ''Effect of shrinkage and creep of concrete on curved steel'concrete composite box girder bridges.'' Chinese Journal of Chang'an University, 28(5), pp. 77-80.
  70. Li, J. B., Wang, J. W., and An, R. M. (2008). ''Structure analysis method of curved composite bridge and application.'' Chinese Journal of Shijiazhuang Railway Institute(Natural Science), No. 2, pp. 12-19.
  71. Lian, V. T. and Shanmugam, N. E. (2003). ''Openings in horizontally curved plate girder webs.'' Thin-Walled Structures, 41(2-3), pp. 245-269. https://doi.org/10.1016/S0263-8231(02)00090-3
  72. Lian, V. T. and Shanmugam, N. E. (2004). ''Design of horizontally curved plate girder webs containing circular openings.'' Thin-Walled Structures, 42(5), pp. 719-739. https://doi.org/10.1016/j.tws.2003.12.007
  73. Linzell, D. G. (2001a). "Curved Steel Bridges-What happens during construction? Information from experimental and analytical studies in the U.S." 9th Annual Conference and Exhibition, Structural Faults and Repair-2001, London, England.
  74. Linzell, D. G. (2001b). "The effects of fabrication and construction on curved bridge behavior." Proc. First Annual International Structural Engineering and Construction Conference, Creative Systems in Structural and Construction Engineering, Honolulu, Hawaii, pp. 893-898.
  75. Linzell, D., Hall, D., and White, D. (2004a). ''Historical perspective on horizontally curved I girder bridge design in the United States.'' Journal of Bridge Engineering, ASCE, 9(3), pp. 218-229. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:3(218)
  76. Linzell, D. G., Leon, R. T., and Zureick, A. H. (2004b). ''Experimental and analytical studies of a horizontally curved steel I-girder bridge during erection'' Journal of Bridge Engineering, ASCE, 9(6), pp. 521-530. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:6(521)
  77. Linzell, D. G. and Shura, J. F. (2010). ''Erection behavior and grillage model accuracy for a large radius curved bridge.'' Journal of Constructional Steel Research, 66(3), pp. 342-350. https://doi.org/10.1016/j.jcsr.2009.09.013
  78. Madhavan, M. and Davidson, J. S. (2009). ''Theoretical evaluation of flange local buckling for horizontally curved I-girders.'' Journal of Bridge Engineering, ASCE, 14(6), pp. 424-435. https://doi.org/10.1061/(ASCE)1084-0702(2009)14:6(424)
  79. Maeda, Y., Kajikawa, Y., and Iba, H. (1973). Static test of two-span continuous curved composite girders. Dept. of Civil Eng., Osaka University, Japan (in Japanease).
  80. McElwain, B. A. and Laman, J. A. (2000). ''Experimental verification of horizontally curved I-girder bridge behavior.'' Journal of Bridge Engineering, ASCE, 5(4), pp. 284-292. https://doi.org/10.1061/(ASCE)1084-0702(2000)5:4(284)
  81. McManus, P. F., Nasir, G. A., and Culver, C. G. (1969). ''Horizontally curved girders-state of the art.'' Journal of the Structural Division, ASCE, 95(5), pp. 853-870.
  82. Marí, A. E., Mirambell, E., and Estrada, E. (2003). ''Effects of construction process and slab prestressing on the serviceability behaviour of composite bridges.'' Journal of Construction Research, 59(2), pp. 135-163. https://doi.org/10.1016/S0143-974X(02)00029-9
  83. Nagoya Expressway Corporation (1984). Design specification of steel structures. Nagoya, Japan (in Japanese).
  84. Nakai, H. and Murayama, Y. (1981). ''Distortional stress analysis and design aid for horizontally curved box girder bridges with diaphragms'' Proc. JSCE, No. 309, pp. 25- 39.
  85. Nakai, H. and Yoo, C. H. (1988). Analysis and design of curved N.Y. steel bridges. McGraw-Hill Book Company, New York, USA.
  86. Nevling, D., Linzell, D., and Laman, J. (2006). ''Examination of level of analysis accuracy for curved Igirder bridges through comparisons to field data.'' Journal of Bridge Engineering, ASCE, 11(2), pp. 160- 168. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:2(160)
  87. Nie, J. G., Xiong, H., and Hu, S. W. (2004). ''Experimental analysis on steel-concrete composite beams with section under combined flexure and torsion.'' China Civil Engineering Journal, 37(11), pp. 6-10.
  88. Nie, J. G. and Tang, L. (2006). ''Torsional characteristics of steel-concrete composite beams.'' Chinese Journal of Progress in Steel Building Structures, 8(5), pp. 30-34.
  89. Nie, J. G. and Tang. L. (2008a). ''Analysis of composite actions in steel-concrete composite beams subjected to torsion.'' Chinese Journal of Industrial Construction, 38(3), pp. 1-4.
  90. Nie, J. G., Tang, L., Hu, S. W., and Zhu, H. C. (2008b). ''Torsional strength of steel-concrete composite box girders.'' China Civil Engineering Journal, 41(1), pp. 1- 11.
  91. Nie, J. G. and Tang, L. (2008c). ''Global shear buckling of corrugated steel plates with edges elastically restrained against rotation.'' Chinese Journal of Engineering mechanics, 25(3), pp. 1-7.
  92. Nie, J. G., Tang, L., and Cai, C. S. (2009). ''Performance of steel-concrete composite beams under combined bending and torsion.'' Journal of Structural Engineering, ASCE, 135(9), pp. 1048-1057. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000042
  93. Nour, S. I. (2000). ''Load distribution in curved composite concrete deck-steel multiple box girder bridges.'' 2000 Annual Conference Abstracts-Canadian Society for Civil Engineering, pp. 208.
  94. Okeil, A. M. and El-Tawil, S. (2002). ''Considerations for opening new access holes in curved box girders.'' Practice Periodical on Structural Design and Construction, 7(1), pp. 26-36. https://doi.org/10.1061/(ASCE)1084-0680(2002)7:1(26)
  95. Okeil, A. M. and El-Tawil, S. (2004). ''Warping stresses in curved box girder bridges: case study.'' Journal of Bridge Engineering, ASCE, 9(5), pp. 487-496. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:5(487)
  96. Okeil, A. M. and El-Tawil, S. (2005). ''Closure to 'Warping stresses in curved box girder bridges: case study' by Ayman M. Okeil and Sherif El-Tawil.'' Journal of Bridge Engineering, ASCE, 10(6), pp. 758-759.
  97. Pearson, C. and Delatte, Z. (2006). ''Collapse of the Quebec Bridge, 1907.'' Journal of Performance of Constructed Facilities, 20(1), pp. 84-91. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:1(84)
  98. Rabizadeh, R. O. and Shore, S. (1975). ''Dynamic analysis of curved box-girder bridges.'' Journal of the Structural Division, ASCE, 101(9), pp. 1899-1912.
  99. Reis, A. J. (2008). ''Steel concrete composite bridges: options and design issues.'' Proc. 7 th International conference on steel bridges. Guimaraes, Portugal.
  100. Samaan, M., Sennah, K., and Kennedy, J. B. (2002). ''Positioning of bearings for curved continuous spreadbox girder bridges.'' Canadian Journal of Civil Engineering, 29(5), pp. 641-652. https://doi.org/10.1139/l02-049
  101. Samaan, M., Sennah, K. M., and Kennedy, J. B. (2005). ''Distribution factors for curved continuous composite box-girder bridges.'' Journal of Bridge Engineering, ASCE, 10(6), pp. 678-692. https://doi.org/10.1061/(ASCE)1084-0702(2005)10:6(678)
  102. Samaan, M., Sennah, K., and Kennedy, J. B. (2007a). ''Impact factors for curved continuous composite multiple-box girder bridges.'' Journal of Bridge Engineering, ASCE, 12(1), pp. 80-88. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:1(80)
  103. Samaan, M., Sennah, K. M., and Kennedy, J. B. (2007b). ''Dynamic analysis of curved continuous multiple-box girder bridges.'' Journal of Bridge Engineering, ASCE, 12(2), pp. 184-193. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:2(184)
  104. Schelling, D. R., Heins, C. P., and Sikes, G. H. (1978). ''State-of-the-art of curved girder bridge programs.'' Computers & Structures, 9(1), pp. 27-37. https://doi.org/10.1016/0045-7949(78)90054-8
  105. Schelling, D. R., Galdos, N. H., and Sahin, M. A. (1992). ''Evaluation of impact factors for horizontally curved steel box bridges.'' Journal of Structural Engineering, ASCE, 118(11), pp. 3203-3221. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3203)
  106. Sennah, K. M. and Kennedy, J. B. (1997). ''Dynamic characteristics of simply supported curved composite multi-cell bridges.'' Canadian Journal of Civil Engineering, 24(4), pp. 621-636. https://doi.org/10.1139/l97-004
  107. Sennah, K. M. and Kennedy, J. B. (1998a). ''Moment and shear distribution factors for straight composite multicell bridges under the Canadian truck loading.'' Proc. 5 th Int. Conf. of Short- and Medium-Span Bridges, Canadian Society for Civil Engineering, Montreal, Quebec, Canada, pp. 345-357.
  108. Sennah, K. M. and Kennedy, J. B. (1998b). ''Shear distribution in simply supported curved composite cellular bridges.'' Journal of Bridge Engineering, ASCE, 3(2), pp. 47-55. https://doi.org/10.1061/(ASCE)1084-0702(1998)3:2(47)
  109. Sennah, K. M. and Kennedy, J. B. (1998c). ''Vibrations of horizontally curved continuous composite cellular bridges.'' Canadian Journal of Civil Engineering, 25(1), pp. 139-150. https://doi.org/10.1139/l97-056
  110. Sennah, K. M. and Kennedy, J. B. (1999a). ''Load distribution factors for composite multicell box-girder bridges.'' Journal of Bridge Engineering, ASCE, 4(1), pp. 71-78. https://doi.org/10.1061/(ASCE)1084-0702(1999)4:1(71)
  111. Sennah, K. M. and Kennedy, J. B. (1999b). ''Simply supported curved composite cellular bridges: Simplified design method.'' Journal of Bridge Engineering, ASCE, 4(2), pp. 85-94. https://doi.org/10.1061/(ASCE)1084-0702(1999)4:2(85)
  112. Sennah, K., Eissa, O., and Lee, G. (2000). ''Moment distribution in curved composite steel I-girder bridges at construction phase.'' 2000 Annual Conference Abstracts- Canadian Society for Civil Engineering, pp. 264.
  113. Sennah, K. M., Marzouck, M. H., and Kennedy, J. B. (2001a). ''Horizontal bracing systems for curved steel Igirder bridges'' Proc. the International Conference on Structural Engineering, Cape Town, South Africa, pp. 599-606.
  114. Sennah, K. M. and Kennedy, J. B. (2001b). ''State-of-the-art in design of curved box-girder bridges.'' Journal of Bridge Engineering, 6(3), pp. 159-167. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:3(159)
  115. Sennah, K. M. and Kennedy, J. B. (2002). ''Literature review in analysis of box-girder bridges.'' Journal of Bridge Engineering, ASCE, 7(2), pp. 134-143. https://doi.org/10.1061/(ASCE)1084-0702(2002)7:2(134)
  116. Sennah, K. M., Kennedy, J. B., and Nour, S. (2003). ''Design for shear in curved composite multiple steel box girder bridges.'' Journal of Bridge Engineering, 8(3), pp. 144-152. https://doi.org/10.1061/(ASCE)1084-0702(2003)8:3(144)
  117. Sennah, K. M., Zhang, X., and Kennedy, J. B. (2004). ''Impact factors for horizontally curved composite box girder bridges.'' Journal of Bridge Engineering, ASCE, 9(6), pp. 512-520. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:6(512)
  118. Sennah, K. M., Zhang, X., and Kennedy, J. B. (2006). ''Closure to 'Impact Factors for Horizontally Curved Composite Box Girder Bridges' by Khaled M. Sennah, Xuesheng Zhang, and John B. Kennedy.'' Journal of Bridge Engineering, ASCE, 11(3), pp. 379. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:3(379)
  119. Shanmugam, N. E., Mahendrakumar, M., and Thevendran. V. (2003). ''Ultimate load behaviour of horizontally curved plate girders .'' Journal of Constructional Steel Research, 59(4), pp. 509-529. https://doi.org/10.1016/S0143-974X(02)00043-3
  120. Shanmugam, N. E., Basher, M. A., and Khalim, A. R. (2009). "Ultimate load behavior of horizontally curved composite plate girders." Steel & Composite Structures, 9(4), pp. 325-348. https://doi.org/10.12989/scs.2009.9.4.325
  121. Shi, X. F., Xuan, Y., and Wang, J. W. (2008). ''Ageing behavior analysis for curved composite steel and concrete bridge.'' Chinese Journal of Railway Engineering, No. 8, pp. 22-24.
  122. Spacone, E. and El-Tawil, S. (2004). ''Nonlinear analysis of steel-concrete composite structures: State of the Art.'' Journal of Structural Engineering, ASCE , 130(2), pp. 159-168. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(159)
  123. Tan, E. L. and Uy, B. (2009). ''Experimental study on curved composite beams subjected to combined flexure and torsion.'' Journal of Constructional Steel Research, 65(8-9), pp. 1855-1863. https://doi.org/10.1016/j.jcsr.2009.04.015
  124. Thevendran, V., Chen, S., Shanmugam, N. E., and Liew, J. Y. R. (1999). ''Nonlinear analysis of steel-concrete composite beams curved in plan.'' Finite Elements in Analysis and Design, 32(3), pp. 125-139. https://doi.org/10.1016/S0168-874X(99)00010-4
  125. Thevendran, V., Chen, S., Shanmugam, N. E., and Liew, J. Y. R. (2000). ''Experimental study on steel-concrete composite beams curved in plan.'' Engineering Structures, 22(8), pp. 877-889. https://doi.org/10.1016/S0141-0296(99)00046-2
  126. Topkaya, C. and Williamson, E. B. (2003). ''Development of computational software for analysis of curved girders under construction loads.'' Computers & Structures, 81(21), pp. 2087-2098. https://doi.org/10.1016/S0045-7949(03)00258-X
  127. Topkaya, C., Williamson. E. B., and Frank, K. H. (2004). ''Behavior of curved steel trapezoidal box-girders during construction.'' Engineering Structures, 26(6), pp. 721- 733. https://doi.org/10.1016/j.engstruct.2003.12.012
  128. Topkaya, C., Widianto., and Williamson, E. B. (2005). ''Evaluation of top flange bracing systems for curved box girders.'' Journal of Bridge Engineering, ASCE, 10(6), pp. 693-703. https://doi.org/10.1061/(ASCE)1084-0702(2005)10:6(693)
  129. Topkaya, C., Kalayci, A. S., and Williamson, E. B. (2008). ''Solver and shell element performances for curved bridge analysis.'' Journal of Bridge Engineering, ASCE, 13(4), pp. 418-424. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:4(418)
  130. Turnage, R. S. and Baber, T. T. (2009). Field testing of the wolf creek curved girder bridge: Part I: Vibration Tests. Final Contract Rep. Department of Civil and Environmental Engineering University of Virginia.
  131. Wang, H. K., Yang, Z. J., and Huang, J. Y. (1987). ''Two analytical methods for straight and curved composite girders.'' Proc. the First Municipal Engineering Professional Committee's Conference on urban bridges(CCES), pp. 605-609.
  132. Wang, Y., Xing, J., and Li, Y. (2009). ''Research on the ralationship of span and stiffness, span and design spanhigh ratio in a curved steel-concrete composite girder bridge.'' Chinese Journal of Shenyang Jianzhu University (Natural Science), 25(5), pp. 899-903.
  133. Xu, Z. Q. (2006). ''Structure system transform construction technology of three-dimensional(3D) trajectories curved composite steel and concrete bridge.'' Chinese Journal of Research & Application of Building Materials, No. 5, pp. 29-30.
  134. Yin, C. X. (2004). ''Space effect analysis and design countermeasures of prestressed steel-concrete curved beam bridge with a small radius.'' Chinese Journal of Steel Construction, 19(75), pp. 23-26.
  135. Yoda, T., Hirashima, M., and Iura, M. (1980). ''Finite displacement theory of curved and twisted thin-walled members.'' Theoretical and Applied Mechanics, Vol. 28, pp. 105-117.
  136. Yoda, T., Hirashima, M., and Kojima, M. (1981). ''Nonlinear analysis of one-dimensional curved and twisted members.'' Theoretical and Applied Mechanics, 30, pp. 115-120.
  137. Yoo, C. H., Evick, D. R., and Heins, C. P. (1974). ''Nonprismatic curved girder analysis.'' Computers & Structures, 4(3), pp. 675-698. https://doi.org/10.1016/0045-7949(74)90014-5
  138. Yoo, C. H., Kang, Y. J., and Davidson, J. S. (1996). ''Buckling analysis of curved beams by finite-element discretization.'' Journal of Bridge Engineering, ASCE, 122(8), pp. 762-770.
  139. Zhang, H. L., Huang, D. Z., and Wang, T. L. (2005). ''Lateral load distribution in curved steel I-girder bridges.'' Journal of Bridge Engineering, ASCE, 10(3), pp. 281-290. https://doi.org/10.1061/(ASCE)1084-0702(2005)10:3(281)
  140. Zureick, A. and Naqib, R. (1999). ''Horizontally curved steel I-girders state-of-the-art analysis methods.'' Journal of Bridge Engineering, ASCE, 4(1), pp. 38-47. https://doi.org/10.1061/(ASCE)1084-0702(1999)4:1(38)