Study on Microseismic Monitoring Method for Enhanced Oil Recovery (EOR)

원유회수증진을 위한 microseismic monitoring 기법 연구

  • Kim, Myung-Sun (Dept. of Natural Resources and Geoenvironmental Engineering, Hanyang University) ;
  • Byun, Joong-Mu (Dept. of Natural Resources and Geoenvironmental Engineering, Hanyang University) ;
  • Seol, Soon-Jee (Dept. of Natural Resources and Geoenvironmental Engineering, Hanyang University)
  • 김명선 (한양대학교 자원환경공학과) ;
  • 변중무 (한양대학교 자원환경공학과) ;
  • 설순지 (한양대학교 자원환경공학과)
  • Received : 2010.08.30
  • Accepted : 2010.11.09
  • Published : 2010.12.31

Abstract

In this study, a module, which can detect the location of the microseismic from the recorded seismogram, was developed by improving Simulps 14 program used in earthquake seismology. The use of the difference between P and S first arrivals provides the more exact locations than P first arrival only. In addition, the results of examining the sensitivity to the errors in the velocity model used in estimating the locations, show that about 10% error in the velocity model was not significantly affected in the calculation of the location for the model used in this paper. On the other hand, the algorithm which can obtain the moment magnitude and the source parameters of microseism by spectral analysis in frequency domain was developed. Finally, the direction and the aperture of the fractures can be revealed by describing the locations and the magnitudes of microseismics in three dimensions.

이 연구에서는 microseismic 신호의 도달시간을 이용하여 microseismic의 발생위치를 찾는 모듈을 지진에서 사용되는 Simulps 14 프로그램을 개선하여 적용하였다. 개선된 알고리듬을 이용하여 P파의 도달시간을 이용한 경우와 S파와 P파의 도달시간의 차이를 이용한 경우를 비교한 결과 S파와 P파의 도달시간의 차이를 이용하였을 경우 보다 정확한 결과를 얻을 수 있음을 확인하였다. 또한 위치 계산에 사용되는 속도모델의 오차에 대한 개발된 모듈의 민감도를 조사한 결과 이 연구에서 사용된 수치모형의 경우 속도모델이 10% 정도의 오차를 가지고 있을 경우 microseismic 발생 위치 계산에 크게 영향을 미치지 않았다. 한편, 획득한 microseismic 자료를 주파수 영역에서 진폭분석을 통해 다양한 송신변수를 계산해내는 알고리듬을 개발하였다. 마지막으로 획득한 microseismic의 발생 위치와 크기를 3차원으로 도시함으로써 균열의 방향과 크기를 평가할 수 있었다.

Keywords

References

  1. Andrews, D. J., 1986, "Objective determination of source parameters and similarity of earthquakes at different size," Earthquake Source Mechanics, Proceedings of the 5th Maurice Ewing Symposium, American Geophysical Union, Washington, D.C., pp. 259-267.
  2. Bardainne, T. and Gaucher, E., 2009, "Comparison of pickingbased and waveform-based location methods of microseimic events: Application to a fracturing job," SEG, Extended abstract, Vol. 28, pp. 1547-1551.
  3. Boatwright, J. and J. Fletcher, 1984, "The partition of radiated energy between P and S waves," Bulletin of the Seismological Society of America, Vol. 71, pp. 361-376.
  4. Boore, D. and Boatwright, J., 1984, "Average body-wave correction coefficients," Bulletin of the Seismological Society of America, Vol. 74, pp. 1615-1621.
  5. Brune, J. N., 1970, "Tectonic stress and spectra of seismic shear waves from earthquakes," J. Geophys. Res. Vol. 78, pp. 4997-5009.
  6. Eisner L. and Ducan, P. M., 2009, "Uncertainties in passive seismic monitoring," The Leading Edge, Vol. 28, pp. 648-655. https://doi.org/10.1190/1.3148403
  7. Gibowicz, S. J. and Kijko, A., 1994, An introduction to mining seismology, Academic Press, San Diego, pp. 265-300.
  8. Hanks, T. C. and Kanamori, H., 1979, "A moment magnitudes scale," J. Geophys. Res. Vol. 84, pp. 2348-2350. https://doi.org/10.1029/JB084iB05p02348
  9. Kwiatek, G., Bohnhoff, M., Dresen, G., Schulze, A., Schulte, T., Zimmermann, G. and Huenges, E., 2008, "Microseismic event analysis in conjunction with stimulation treatments at the geothermal research well GtGrSk4/05 in Gross Schonebeck/Germany," 33rd Stanford Workshop on Geothermal Reservoir Engineering, Stanford, USA, CD-ROM.
  10. Maxwell, S. C. and Urbancic, T. I., 2001, "The role of passive microseismic monitoring in the instrumented oil field," The Leading Edge, Vol. 20, pp. 636-639. https://doi.org/10.1190/1.1439012
  11. Pinnacle, 2010.8.27, www.pinntech.com.
  12. Richter, C. F., 1935, "An instrumental magnitude scale," Bulletin of the Seismological Society of America, Vol. 25, pp. 1-32.
  13. Rodriguez, I. V., Sacchi, M. D. and Gu, Y. J., 2010, "Continuous hypocenter and source mechanism inversion via a Green's function-based matching pursuit algorithm," The Leading Edge, Vol. 29, pp. 334-337. https://doi.org/10.1190/1.3353731
  14. Sato, T., 1978, "A note on body wave radiation from expanding tension crack," Sci. Rep. Tohoku Univ., Ser. 5. Geophysics, 25, 1-10.
  15. Shemeta, J. and Anderson, P., 2010, "It's a matter of size: Magnitude and moment estimates for microseismic data," The Leading Edge, Vol. 29, pp. 296-302. https://doi.org/10.1190/1.3353726
  16. Snoke J. A., 1987, "Stable determination of (Brune) stress drops," Bulletin of the Seismological Society of America, Vol. 77, pp. 530-538.
  17. Um, J. and Thurber, C., 1987, "A fast algorithm for two point seismic ray tracing," Bulletin of the Seismological Society of America, Vol. 77, pp. 972-986.
  18. Urbancic, T. I., and Zinno, R. J., 1998, "Cotton Valley Hydraulic Fracture Imaging Project: Feasibility of determining fracture behavior using microseismic event locations and source parameters," 68th Ann. Mtg., SEG, pp. 964-967.