DOI QR코드

DOI QR Code

Synthesis and Properties of Partially Hydrolyzed Acrylonitrile-co-Acrylamide Superabsorbent Hydrogel

  • Pourjavadi, Ali (Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology) ;
  • Hosseinzadeh, Hossein (Department of Chemistry, University of Payame Noor)
  • Received : 2010.01.06
  • Accepted : 2010.07.22
  • Published : 2010.11.20

Abstract

In this work, a novel method to synthesis of an acrylic superabsorbent hydrogel was reported. In the two stage hydrogel synthesis, first copolymerization reaction of acrylonitrile (AN) and acrylamide (AM) monomers using ammonium persulfate (APS) as a free radical initiator was performed. In the second stage, the resulted copolymer was hydrolyzed to produce carboxamide and carboxylate groups followed by in situ crosslinking of the polyacrylonitrile chains. The results from FTIR spectroscopy and the dark red-yellow color change show that the copolymerization, alkaline hydrolysis and crosslinking reactions have been do take place. Scanning electron microscopy (SEM) verifies that the synthesized hydrogels have a porous structure. The results of Brunauer-Emmett-Teller (BET) analysis showed that the average pore diameter of the synthesized hydrogel was 13.9 nm. The synthetic parameters affecting on swelling capacity of the hydrogel, such as AM/AN weight ratio and hydrolysis time and temperature, were systematically optimized to achieve maximum swelling capacity (330 g/g). The swollen gel strength of the synthesized hydrogels was evaluated via viscoelastic measurements. The results indicated that superabsorbent polymers with high water absorbency were accompanied by low gel strength. The swelling of superabsorbent hydrogels was also measured in various solutions with pH values ranging from 1 to 13. Also, the pH reversibility and on-off switching behavior makes the hydrogel as a good candidate for controlled delivery of bioactive agents. Finally, the swelling of synthesized hydrogels with various particle sizes obey second order kinetics.

Keywords

References

  1. Buchholz, F. L.; Graham, A. T. Modern Superabsorbent Polymer Technology; Elsevier: Amsterdam, 1997.
  2. Peppas, L. B.; Harland, R. S. Absorbent Polymer Technology; Elsevier: Amsterdam, 1990.
  3. Po, R. J. Macromol. Sci-Rev. Macromol. Chem. Phys. 1994, C34, 607.
  4. Hoffman, A. S. Polymeric Materials Encyclopedia; Salamone, J. C., Ed.; CRC Press: Boca Raton, Florida, 1996.
  5. Krul, L. P.; Narciko, E. I.; Matusevich, Y. I.; Yakimtsova, L. B.; Matusevich, V.; Seeber, W. Polym. Bull. 2000, 45, 159. https://doi.org/10.1007/PL00006832
  6. Pourjavadi, A.; Harzandi, A. M.; Hosseinzadeh, H. Europ. Polym. J. 2004, 40, 1363. https://doi.org/10.1016/j.eurpolymj.2004.02.016
  7. Zhao, Y.; Su, H.; Fang, L.; Tan, T. Polymer 2005, 46, 5368. https://doi.org/10.1016/j.polymer.2005.04.015
  8. Yin, L.; Fei, L.; Cui, F.; Tang, C.; Yin, C. Biomaterials 2007, 28, 1258. https://doi.org/10.1016/j.biomaterials.2006.11.008
  9. Hoffman, A. S. Adv. Drug Delivery Rev. 2002, 54, 3. https://doi.org/10.1016/S0169-409X(01)00239-3
  10. Kazakov, S. V. Smart Polymers: Applications in Biotechnology and Biomedicine; CRC Press: Boca Raton, London, New York, 2008; Chap. 1, p 3.
  11. Gupta, P.; Vermani, K.; Garg, S. Drug Discov. Today 2002, 7, 569. https://doi.org/10.1016/S1359-6446(02)02255-9
  12. Castel, D.; Richard, A.; Audebert, R. J. Appl. Polym. Sci. 1990, 39, 11. https://doi.org/10.1002/app.1990.070390102
  13. Peppas, N. A.; Mikes, A. G. Hydrogels in Medicine and Pharmacy; CRC Press: Boca Raton, Florida, 1986.
  14. Kost, J. Encyclopedia of Controlled Drug Delivery; Mathiowitz, E., Ed.; Wiley: New York, 1995.
  15. Jeong, S. H.; Huh, K. M.; Park, K. Polymers in Drug Delivery; CRC Press: Boca Raton, London, New York, 2006; Chap. 5, p 57.
  16. Xinxi, Z. Superabsorbent; Chemical Industry Press: Beiging, 2002.
  17. Xiangdong, Z. Shanxi. Chem. Ind. (in Chinese) 1999, 28, 19.
  18. Gao, J.; Frisken, B. J. Langmuir 2005, 21, 545. https://doi.org/10.1021/la0485982
  19. Pakel, N.; Yoshii, F.; Kume, T.; Guven, S.; Saraydin, D.; Guven, O. Carbohyd. Polym. 2004, 55, 139. https://doi.org/10.1016/j.carbpol.2003.08.015
  20. Tsubakimoto, T.; Shimomura, T.; Irie, Y. US Patent 1987, 4, 666, 983.
  21. Funk, R.; Frenz, V.; Riegel, U.; Weismantel, M.; Engelhart, F.; Daniel, T. US Patent 2002, 6, 472, 478.
  22. Jockusch, S.; Turro, N. J.; Mitsukami, Y.; Matsumoto, M.; Iwamura, T.; Lindner, T.; Flohr, A.; Massimo, G. J. Appl. Polym. Sci. 2009, 111, 2163. https://doi.org/10.1002/app.29209
  23. Zhang, J.; Wang, L.; Wang, A. Macromol. Mater. Eng. 2006, 291, 612. https://doi.org/10.1002/mame.200500387
  24. Seetapan, N.; Wongsawaeng, J.; Kiatkamjornwong, S. Polym. Adv. Technol. 2010, 21, 1658.
  25. Rodehed, C.; Ranby, B. J. Appl. Polym. Sci. 1986, 32, 3323. https://doi.org/10.1002/app.1986.070320134
  26. Lim, D. W.; Whang, H. S.; Yoon, K. J. J. Appl. Polym. Sci. 2001, 79, 1423. https://doi.org/10.1002/1097-4628(20010222)79:8<1423::AID-APP90>3.0.CO;2-V
  27. Weaver, M. O.; Gugliemeli, L. A.; Doane, W. M.; Russel, C. R. J. Appl. Polym. Sci. 1971, 15, 3015. https://doi.org/10.1002/app.1971.070151211
  28. Silverstein, R. M.; Webster, F. X. Spectrometric Identification of Organic Compounds, 6th ed., Wiley: New York, 1998.
  29. Chen, J.; Park, K. J. Control. Rel. 2000, 65, 73. https://doi.org/10.1016/S0168-3659(99)00238-2
  30. Chen, J.; Park, K. Carbohydr. Polym. 2000, 41, 259. https://doi.org/10.1016/S0144-8617(99)00144-7
  31. Gotoh, T.; Nakatani, Y.; Sakohara, S. J. Appl. Polym. Sci. 1998, 69, 895. https://doi.org/10.1002/(SICI)1097-4628(19980801)69:5<895::AID-APP8>3.0.CO;2-H
  32. Badiger, M. V.; McNeil, M. E.; Graham, N. B. Biomaterials 1993, 14, 1059. https://doi.org/10.1016/0142-9612(93)90206-H
  33. Smith, S. J.; Lind, E. J. US Patent 1995, 5, 399, 591.
  34. Smith, S. J.; Lind, E. J. US Patent 1993, 5, 314, 420.
  35. Barvic, M.; Kliment, K.; Zavadil, M. J. Biomed. Mater. Res. 1967, 1, 313. https://doi.org/10.1002/jbm.820010303
  36. Chirila, T. V.; Constable, I. J.; Crawford, G. J.; Vijayasekaran, S.; Thompson, D. E.; Chen, Y. C.; Fletcher, W. A.; Griffin, B. J. Biomaterials 1993, 14, 26. https://doi.org/10.1016/0142-9612(93)90072-A
  37. Aizawa, M.; Suzuki, S. Bull. Chem. Soc. Japan 1971, 44, 2967. https://doi.org/10.1246/bcsj.44.2967
  38. Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953.
  39. Xie, J.; Liu, X.; Liang, J.; Luo, Y. J. Appl. Polym. Sci. 2009, 112, 602. https://doi.org/10.1002/app.29463
  40. Hosseinzadeh, H.; Pourjavadi, A.; Mahdavinia, G. R. J. Polym. Mater. 2006, 23, 61.
  41. Hosseinzadeh, H.; Pourjavadi, A.; Zohouriaan-Mehr, M. J. J. Biomater. Sci. Polym. Edn. 2004, 15, 1499. https://doi.org/10.1163/1568562042459715
  42. Kabiri, K.; Mirzadeh, H.; Zohuriaan-Mehr M. J.; Daliri, M. Polym. Int. 2009, 58, 1252. https://doi.org/10.1002/pi.2652
  43. Nagahama, M.; Fujiura, K.; Enami, S.; Ouchi, T.; Ohya, Y. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 6317. https://doi.org/10.1002/pola.22943
  44. Zhang, J.; Zhao, Y.; Wang, A. Polym. Eng. Sci. 2007, 47, 619. https://doi.org/10.1002/pen.20733
  45. Hu, B. H.; Messersmith, P. B. Orthod. Craniofacial Res. 2005, 8, 145. https://doi.org/10.1111/j.1601-6343.2005.00330.x
  46. Lakouraj, M. M.; Tajbakhsh, M.; Mokhtary, M. Iranian Polym. J. 2005, 14, 1022.
  47. Kiatkamjorwong, S.; Phunchareon, P. J. Appl. Polym. Sci. 1999, 72, 1349. https://doi.org/10.1002/(SICI)1097-4628(19990606)72:10<1349::AID-APP16>3.0.CO;2-K
  48. Wen-Fu, L.; You-Min, T. J. Appl. Polym. Sci. 1999, 72, 1221. https://doi.org/10.1002/(SICI)1097-4628(19990531)72:9<1221::AID-APP11>3.0.CO;2-C
  49. Omidian, H.; Hashemi, S. A.; Sammes, P. G.; Meldrum, I. Polymer 1999, 40, 1753. https://doi.org/10.1016/S0032-3861(98)00394-2
  50. Omidian, H.; Hashemi, S. A.; Sammes, P. G.; Meldrum, I. Polymer 1998, 39, 6697. https://doi.org/10.1016/S0032-3861(98)00095-0
  51. Quintana, J. R.; Valderruten, N. E.; Katime, I. Langmuir 1999, 15, 4728. https://doi.org/10.1021/la980982+

Cited by

  1. Fabrication of Amino Acid Based Silver Nanocomposite Hydrogels from PVA- Poly(Acrylamide-co-Acryloyl phenylalanine) and Their Antimicrobial Studies vol.33, pp.10, 2012, https://doi.org/10.5012/bkcs.2012.33.10.3191
  2. -poly(acrylamide) vol.64, pp.10, 2012, https://doi.org/10.1002/star.201200001
  3. Superabsorbent hydrogel composites with a focus on hydrogels containing nanofibers or nanowhiskers of cellulose and chitin vol.131, pp.2, 2013, https://doi.org/10.1002/app.39725
  4. -poly(acrylamide) superabsorbent polymers varying in grafting parameters and absorbency vol.131, pp.11, 2014, https://doi.org/10.1002/app.40368
  5. Preparation and Characterization of Bead Type Superabsorbent Resin vol.38, pp.6, 2014, https://doi.org/10.7317/pk.2014.38.6.760
  6. Synthesis and Characterization of Poly(acrylic acid)/PVP Modified Bentonite Superabsorbent Polymer vol.805-806, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.805-806.1356
  7. Synthesis and Characterization of Superabsorbent Polymer Based on Carboxymethyl Cellulose-graft-Itaconic Acid vol.19, pp.2, 2018, https://doi.org/10.1007/s12221-018-7837-9
  8. Preparation and Biofilm Culturing Characteristics of a Novel Porous Carrier vol.38, pp.1, 2021, https://doi.org/10.1089/ees.2020.0184