DOI QR코드

DOI QR Code

Mixed Electrolytes of Organic Solvents and Ionic Liquid for Rechargeable Lithium-Ion Batteries

  • Choi, Ji-Ae (Department of Chemical Engineering, Hanyang University) ;
  • Shim, Eun-Gi (Electrolyte Development Team, Techno SemiChem Co. Ltd.) ;
  • Scrosati, Bruno (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Dong-Won (Department of Chemical Engineering, Hanyang University)
  • Received : 2010.05.26
  • Accepted : 2010.09.06
  • Published : 2010.11.20

Abstract

Mixed electrolytes formed by the combination of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (BMP-TFSI) ionic liquid and standard liquid electrolyte are prepared and characterized. Linear sweep voltammetry measurements demonstrate that these mixed systems exhibit a wide electrochemical stability window, allowing them to be suitable electrolyte for carbonaceous anode-based lithium-ion batteries. Lithium-ion cells composed of graphite anode and $LiCoO_2$ cathode are assembled using the mixed electrolytes, and their cycling performances are evaluated. The cell containing proper content of BMP-TFSI shows good cycling performance comparable to that of a cell assembled with organic electrolyte. The presence of BMP-TFSI in the mixed electrolyte contributes to the reduction of the flammability of electrolyte solution and the improvement of the thermal stability of charged $Li_{1-x}CoO_2$ in the electrolyte solution.

Keywords

References

  1. Welton, T. Chem. Rev. 1999, 99, 2071. https://doi.org/10.1021/cr980032t
  2. Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nature Mater. 2009, 9, 621.
  3. Lewandowski, A.; Swiderska-Mocek, A. J. Power Sources 2009, 194, 601. https://doi.org/10.1016/j.jpowsour.2009.06.089
  4. Fernicola, A.; Croce, F.; Scrosati, B.; Watanabe, T.; Ohno, H. J. Power Sources 2007, 174, 342. https://doi.org/10.1016/j.jpowsour.2007.09.013
  5. Reale, P.; Fernicola, A.; Scrosati, B. J. Power Sources 2009, 194, 182. https://doi.org/10.1016/j.jpowsour.2009.05.016
  6. Yim, T.; Lee, H. Y.; Kim, H. J.; Mun, J.; Kim, S.; Oh, S. M.; Kim, Y. G. Bull. Korean Chem. Soc. 2007, 28, 1567. https://doi.org/10.5012/bkcs.2007.28.9.1567
  7. Shin, J. H.; Cairns, E. J. J. Power Sources 2008, 177, 537. https://doi.org/10.1016/j.jpowsour.2007.11.043
  8. Larush, L.; Borgel, V.; Markevich, E.; Haik, O.; Zinigrad, E.; Aurbach, D. J. Power Sources 2009, 189, 217. https://doi.org/10.1016/j.jpowsour.2008.09.099
  9. Borgel, V.; Markevich, E.; Aurbach, D.; Semrau, G.; Schmidt, M. J. Power Sources 2009, 189, 331. https://doi.org/10.1016/j.jpowsour.2008.08.099
  10. Hassoun, J.; Fernicola, A.; Navarra, M. A.; Panero, S.; Scrosati, B. J. Power Sources 2010, 195, 574. https://doi.org/10.1016/j.jpowsour.2009.07.046
  11. Eo, S. M.; Cha, E.; Kim, D. W. J. Power Sources 2009, 189, 766. https://doi.org/10.1016/j.jpowsour.2008.08.008
  12. Xu, K.; Ding, M. S.; Zhang, S.; Allen, J. L.; Jow, T. R. J. Electrochem. Soc. 2002, 149, A622. https://doi.org/10.1149/1.1467946
  13. Sivakkumar, S. R.; MacFarlane, D. R.; Forsyth, M.; Kim, D. W. J. Electrochem. Soc. 2007, 154, A834. https://doi.org/10.1149/1.2750443
  14. Aurbach, D.; Ein-Eli, Y.; Markovsky, B.; Zaban, Z. J. Electrochem. Soc. 1995, 142, 885.
  15. Ein-Eli, Y.; Thomas, S. R.; Chadha, R.; Blakley, T. J.; Koch, V. R. J. Electrochem. Soc. 1997, 144, 823. https://doi.org/10.1149/1.1837495
  16. Mogi, R.; Inaba, M.; Jeong. S.-K.; Iriyama, Y.; Abe, T.; Ogumi, Z. J. Electrochem. Soc. 2002, 149, A1578. https://doi.org/10.1149/1.1516770
  17. Sato, T; Maruo, M.; Marukane, S.; Takagi, K. J. Power Sources 2004, 138, 253. https://doi.org/10.1016/j.jpowsour.2004.06.027
  18. Ota, H; Sakata, Y; Otake, Y; Shima, K.; Ue, M.; Yamaki, J. J. Electrochem. Soc. 2005, 151, A1778. https://doi.org/10.1149/1.1798411
  19. Zhang, S. S. J. Power Sources 2006, 162, 1379. https://doi.org/10.1016/j.jpowsour.2006.07.074
  20. El Ouatani, L.; Dedryvere, R.; Siret, C.; Biensan, P.; Gonbeau, D. J. Electrochem. Soc. 2009, 156, A468. https://doi.org/10.1149/1.3111891
  21. Holzapfel, M.; Jost, C.; Prodi-Schwab, A.; Krumeich, F.; Wursig, A.; Buqa, H.; Novak, P. Carbon 2005, 43, 1488. https://doi.org/10.1016/j.carbon.2005.01.030
  22. Katayama, Y.; Yukumoto, M.; Miuta, T. Electrochem. Solid State Lett. 2003, 6, A96. https://doi.org/10.1149/1.1566213
  23. Zheng, H.; Jiang, K.; Abe, T.; Ogumi, Z. Carbon 2006, 44, 203. https://doi.org/10.1016/j.carbon.2005.07.038
  24. Funabiki, A.; Inaba, M.; Ogumi, Z. J. Power Sources 1997, 68, 227. https://doi.org/10.1016/S0378-7753(96)02556-6
  25. Levi, M. D.; Salitra, G.; Markovsky, B.; Teller, H.; Aurbach, D.; Heider, U.; Heider, L. J. Electrochem. Soc. 1999, 146, 1279. https://doi.org/10.1149/1.1391759
  26. Baba, Y.; Okada, S.; Yamaki, J. Solid State Ionics 2002, 148, 311. https://doi.org/10.1016/S0167-2738(02)00067-X
  27. Sakabe, H.; Matsumoto, H.; Tatsumi, K. Electrochim. Acta 2007, 53, 1048. https://doi.org/10.1016/j.electacta.2007.02.054

Cited by

  1. Electrodes in Ionic Liquid-Based Gel Polymer Electrolytes vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.608
  2. Triethylbutylammonium bis(trifluoromethanesulphonyl)imide ionic liquid as an effective electrolyte additive for Li-ion batteries vol.19, pp.6, 2013, https://doi.org/10.1007/s11581-012-0820-y
  3. Allyl cyanide as a new functional additive in propylene carbonate-based electrolyte for lithium-ion batteries vol.19, pp.8, 2013, https://doi.org/10.1007/s11581-013-0844-y
  4. Evaluation of the wetting time of porous electrodes in electrolytic solutions containing ionic liquid vol.43, pp.7, 2013, https://doi.org/10.1007/s10800-013-0558-x
  5. Recent Progress in Research on High-Voltage Electrolytes for Lithium-Ion Batteries vol.15, pp.10, 2014, https://doi.org/10.1002/cphc.201402175
  6. Composition and Temperature Dependence of Density, Surface Tension, and Viscosity of EMIM DEP/MMIM DMP + Water + 1-Propanol/2-Propanol Ternary Mixtures and Their Mathematical Representation Using the Jouyban–Acree Model vol.59, pp.8, 2014, https://doi.org/10.1021/je400576e
  7. Energy applications of ionic liquids vol.7, pp.1, 2014, https://doi.org/10.1039/C3EE42099J
  8. Ionic Liquid Hybrid Electrolytes for Lithium-Ion Batteries: A Key Role of the Separator–Electrolyte Interface in Battery Electrochemistry vol.7, pp.22, 2015, https://doi.org/10.1021/acsami.5b00496
  9. LiFePO4/Li Batteries with Mixtures of Carbonate and Ionic Liquid [EMIM]+[TFSI]- as High Properties and Safety Electrolyte vol.275-277, pp.1662-7482, 2013, https://doi.org/10.4028/www.scientific.net/AMM.275-277.2375
  10. Battery Electrolytes Based on Unsaturated Ring Ionic Liquids: Conductivity and Electrochemical Stability vol.160, pp.9, 2013, https://doi.org/10.1149/2.045309jes
  11. Thin Film Solid Electrolyte vol.162, pp.10, 2015, https://doi.org/10.1149/2.0501510jes
  12. ][FTFSI] Ionic Liquid Electrolytes vol.11, pp.12, 2018, https://doi.org/10.1002/cssc.201702288
  13. Effect of 1-butyl-1-methylpyrrolidinium hexafluorophosphate as a flame-retarding additive on the cycling performance and thermal properties of lithium-ion batteries vol.56, pp.27, 2011, https://doi.org/10.1016/j.electacta.2011.09.009
  14. Electrochemical behavior of organic radical polymer cathodes in organic radical batteries with N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid electrolytes vol.66, pp.None, 2012, https://doi.org/10.1016/j.electacta.2012.02.003
  15. Spectroscopic and computational analysis of the molecular interactions in the ionic liquid ion pair [BMP]+[TFSI]- vol.175, pp.None, 2010, https://doi.org/10.1016/j.molliq.2012.09.001
  16. Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium-sulfur batteries vol.1, pp.29, 2013, https://doi.org/10.1039/c3ta11553d
  17. ‘Bucky gel’ of multiwalled carbon nanotubes as electrodes for high performance, flexible electric double layer capacitors vol.24, pp.46, 2010, https://doi.org/10.1088/0957-4484/24/46/465704
  18. A Comprehensive Study on Rechargeable Energy Storage Technologies vol.13, pp.4, 2010, https://doi.org/10.1115/1.4036000
  19. Passivation behaviour of aluminium current collector in ionic liquid alkyl carbonate (hybrid) electrolytes vol.2, pp.1, 2010, https://doi.org/10.1038/s41529-018-0033-6
  20. Specifically Designed Ionic Liquids-Formulations, Physicochemical Properties, and Electrochemical Double Layer Storage Behavior vol.3, pp.2, 2019, https://doi.org/10.3390/chemengineering3020058