DOI QR코드

DOI QR Code

Kinetics and Mechanism of Nucleophilic Substitution Reaction of 4-Substituted-2,6-dinitrochlorobenzene with Benzylamines in MeOH-MeCN Mixtures

  • Kim, Young-Sun (Department of Chemistry Education and Education Research Institute, Gyeongsang National University) ;
  • Choi, Ho-June (Department of Chemistry Education and Education Research Institute, Gyeongsang National University) ;
  • Yang, Ki-Yull (Department of Chemistry Education and Education Research Institute, Gyeongsang National University) ;
  • Park, Jong-Keun (Department of Chemistry Education and Education Research Institute, Gyeongsang National University) ;
  • Koo, In-Sun (Department of Chemistry Education and Education Research Institute, Gyeongsang National University)
  • Received : 2010.08.25
  • Accepted : 2010.09.14
  • Published : 2010.11.20

Abstract

The reaction rates of 4-X-2,6-dinitrochlorobenzenes (X = $NO_2$, CN, $CF_3$) with Y-substituted benzylamines (Y = p-$OCH_3$, p-$CH_3$, H, p-Cl) in MeOH-MeCN mixtures were measured by conductometry at $25^{\circ}C$. It was observed that the rate constant increased in the order of X = $NO_2$ > CN > $CF_3$ and in the order of Y = p-$OCH_3$ > p-$CH_3$ > H > p-Cl. When the solvent composition was varied, the rate constant increased in the order of 100% MeOH < 50% (v/v) MeOH-MeCN < 100% MeCN. These results may be ascribed to the formation of hydrogen bonds between the alcoholic hydrogen and nitrogen of benzylamines in groud state (GS). We conclude that the reaction takes place via $S_NAr$ base on the transition state parameters ${\rho}x$, ${\rho}Y$, $\beta_{nuc}$, and solvent effects.

Keywords

References

  1. Terrier, F. Aromatic Nucleophilic Substitution Reaction; VCH Publishers: New York, 1991.
  2. Bernasconi, C. F. MTP Int. Rev. Sci. Org. Chem. Ser. 1 1973, 3, 33.
  3. Lee, H. W.; Lee, I. J. Korean Chem. Soc. 1978, 22, 221.
  4. Koniglio, B. O. et al. J. Chem. Soc. 1966, 152.
  5. Parker, A. J. J. Chem. Soc. 1961, 4398. https://doi.org/10.1039/jr9610004398
  6. Kingsbury, C. A. J. Org. Chem. 1964, 29, 3262. https://doi.org/10.1021/jo01034a032
  7. Suchkova, L. A.; Suchkova, L. A. Reakts. Sposobnost Organ. Soed. 1968, 5, 310.
  8. Bullestreri, F. P. et al. J. Org. Chem. 1977, 42, 1415. https://doi.org/10.1021/jo00428a032
  9. Banjoko, O.; Babatunde, I. A. Tetrahedron 2004, 60, 4645. https://doi.org/10.1016/j.tet.2004.03.079
  10. Mancini, P. M.; Fortunato, G. G.; Vottero, L. R. J. Phys. Org. Chem. 2004, 17, 138. https://doi.org/10.1002/poc.704
  11. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834. https://doi.org/10.1021/jo9814905
  12. Kang, D. H.; Koo, I. S.; Lee, J. G.; Lee, I. J. Korean Chem. Soc. 1985, 29, 565.
  13. Sung, R. Y.; Choi, H.; Lee, J. P.; Park, J. K.; Koo, I. S. Bull. Korean Chem. Soc. 2009, 30, 1579. https://doi.org/10.5012/bkcs.2009.30.7.1579
  14. Jenks, W. P. In Nucleophilicity; Harris, J. M., Mc Manus, S. P., Eds.; Advances in Chemistry Series 215, American Chemical Society: Washington, DC, 1987; p 155.
  15. Terrier, F.; Mokhtari, M.; Goumony, R.; Hallé, J.-C.; Buncel, E. Org. Biomol. Chem. 2003, 1, 1757. https://doi.org/10.1039/b301031g
  16. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  17. Lee, I. Adv. Phy. Org. Chem. 1992, 27, 57.
  18. Williams, A. Chem. Soc. Rev. 1994, 93.
  19. Page, A.; Williams, A. In Organic and Bio-organic Mechanisms; Longman: Harlow, Chapter 3.
  20. Kresge, A. J. Chem. Soc. Rev. 1973, 2, 475. https://doi.org/10.1039/cs9730200475
  21. Bordwell, F. G.; Hughes, D. L. J. Am. Chem. Soc. 1986, 108, 5991. https://doi.org/10.1021/ja00279a054
  22. Moutiers, G.; Guével, E. L.; Cannes, C.; Terrier, F.; Buncel, E. Eur. J. Org. Chem. 2001, 3279.
  23. Bordwell, F. G.; Boyle, W. J. J. Am. Chem. Soc. 1972, 94, 3907. https://doi.org/10.1021/ja00766a041
  24. Bordwell, F. G.; Hautala, J. A. J. Org. Chem. 1978, 43, 3116. https://doi.org/10.1021/jo00410a005
  25. Bordwell, F. G.; Clemens, A. H. J. Org. Chem. 1981, 46, 1037. https://doi.org/10.1021/jo00318a044
  26. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834. https://doi.org/10.1021/jo9814905
  27. Hwang, J.; Yang, K.; Koo, I. S.; Sung, D. S.; Lee, I. Bull. Korean Chem. Soc. 2006, 27, 733. https://doi.org/10.5012/bkcs.2006.27.5.733
  28. Ritchie, C. D. In Solute-Solvent Interactions; Coetzee, J. F., Ritchie, C. D., Eds.; Marcel Dekker: New York, 1969; Chapter 4.
  29. Coetzee, J. F. Progress in Physical Organic Chemistry; Streitwieser, A., Jr., Taft, R. W., Eds.; Wiley: New York, 1967; Vol. 4, pp 54-92.
  30. Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099.
  31. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B. J. Phys. Chem. B 1999, 103, 7302. https://doi.org/10.1021/jp991115w
  32. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834. https://doi.org/10.1021/jo9814905
  33. Kang, D. H.; Koo, I. S.; Lee, J. G.; Lee, I. J. Korean Chem. Soc. 1985, 29, 565.
  34. Hwang, J.; Yang, K.; Koo, I. S.; Sung, D. S.; Lee, I. Bull. Korean Chem. Soc. 2006, 27, 733. https://doi.org/10.5012/bkcs.2006.27.5.733

Cited by

  1. Kinetics and Mechanism of the Oxidation of Substituted Benzyl Alcohols by Cr(VI)-4,4'-Bipyridine Complex vol.13, pp.1, 2012, https://doi.org/10.5762/KAIS.2012.13.1.462
  2. A Study for Kinetics and Oxidation Reaction of Substituted Benzyl Alcohols using Cr(VI)-Heterocyclic Complex(Cr(VI)-Isoquinoline) vol.14, pp.11, 2013, https://doi.org/10.5762/KAIS.2013.14.11.6000
  3. A Study for Mechanism and Oxidation Reaction of Substituted Benzyl Alcohols using Cr(VI)-Heterocyclic Complex[Cr(VI)-2-methylpyrazine] vol.14, pp.11, 2013, https://doi.org/10.5762/KAIS.2013.14.11.6039
  4. Enthalpy-Entropy Correlations in Reactions of Aryl Benzoates with Potassium Aryloxides in Dimethylformamide vol.45, pp.4, 2013, https://doi.org/10.1002/kin.20763
  5. Kinetics and Mechanism of the Oxidation of Substituted Benzyl Alcohols by Cr(VI)-Heterocyclic Complex (2,4'-Bipyridinium Chlorochromate) vol.25, pp.6, 2014, https://doi.org/10.14478/ace.2014.1108
  6. A Study for Kinetics and Oxidation Reaction of Substituted Benzyl Alcohols Using Cr(VI)-6-Methylquinoline vol.26, pp.3, 2015, https://doi.org/10.14478/ace.2015.1021
  7. Mechanism for the Oxidation Reaction of Alcohols Using Cr(VI)-Pyrazine Complex vol.27, pp.1, 2016, https://doi.org/10.14478/ace.2015.1118
  8. Activation parameter changes as an additive tool for a mechanistic viewpoint in the aromatic nucleophilic substitution reactions in solution vol.148, pp.8, 2017, https://doi.org/10.1007/s00706-017-1956-2
  9. 6-Methylquinolinium Dichromate를 이용한 치환 벤질 알코올류의 산화반응 속도 vol.12, pp.12, 2010, https://doi.org/10.5762/kais.2011.12.12.5990
  10. 2,2'-Bipyridinium Chlorochromate에 의한 치환 벤질 알코올류의 산화반응과 메카니즘에 관한 연구 vol.13, pp.7, 2010, https://doi.org/10.5762/kais.2012.13.7.3252
  11. 크롬(VI)-4-(Dimethylamino)pyridine에 의한 알코올류의 산화반응과 반응속도에 관한 연구 vol.14, pp.1, 2010, https://doi.org/10.5762/kais.2013.14.1.499
  12. (C10H8N2H)2Cr2O7를 이용한 치환 벤질 알코올류의 산화반응과 반응속도에 관한 연구 vol.28, pp.5, 2010, https://doi.org/10.14478/ace.2017.1063
  13. C9H7NHCrO3Cl에 의한 알코올류의 산화반응에서 속도론과 메카니즘 vol.19, pp.8, 2010, https://doi.org/10.5762/kais.2018.19.8.378