DOI QR코드

DOI QR Code

Comparison of combustion properties of native wood species used for fire pots in Korea

  • Chung, Yeong-Jin (Department of Fire & Disaster Prevention, Kangwon National University)
  • Received : 2009.05.09
  • Accepted : 2009.06.23
  • Published : 2010.01.25

Abstract

In Korean rural homes, wood is used as a fuel in fire pots for cooking and heating. The process of combustion generates products which may be harmful to occupants. This paper investigates the combustion characteristics of four species of Korean native wood using the cone calorimeter (ISO 5660-1). The peak HRR of the Oak at $50\;kW/m^2$ was $375.7\;kW/m^2$ in comparison with 287.7, 370.5 and $193.7\;kW/m^2$ for the Pitch Pine, Chestnut Tree and Zelkova, respectively. In addition, Oak has low $CO_{peak}$ yield (0.0581 kg/kg) compared to that of Pitch Pine and Chestnut Tree except for Zelkova and lower CO/ $CO_2$ yield (0.013144) than Chestnut Tree and Zelkova except for Pitch Pine which had for 0.000012. Also, the Oak relatively has the low specific extinction area ($SEA_{peak}$, $79.80\;m^2/kg$) except for Chestnut Tree. With respect to the reduction of incidents of gaseous poisoning cause headache and sickness attributed to CO production, Oak showed excellent properties compared with that of Pitch Pine, Chestnut Tree and Zelkova.

Keywords

References

  1. G.R. Katzer, How Wood Stacked-up Against Other Fuels in 1977, Report No. 597, Physics and Engineering Laboratory, DSIR, New Zealand, 1978.
  2. N.P. Cheremisinoff, Wood for Energy Production, Ann Arbor Science Publishers, Ann Arbor, MI, USA, 1980.
  3. K. Steiner, Fuels and Fuel Burners, McGraw-Hill Book Company, Inc., New York, 1946.
  4. H. Kubler, Wood as Building and Hobby Material, John Wiley & Sons, Inc., USA, 1980.
  5. F. Shafizadeh, W.F. DeGroot:, in: F. Shafizadeh, K.V. Sarkenen, D.A. Tillman (Eds.), Thermal Uses and Properties of Carbohydrates and Lignins, Academic Press, New York, USA, 1976.
  6. D. Drysdale, An Introduction to Fire Dynamics, John Wiley & Sons, USA, 1996.
  7. M.J. Spearpoint, J.G. Quintiere, Fire Saf. J. 36 (2001) 391. https://doi.org/10.1016/S0379-7112(00)00055-2
  8. A.D. Chirico, M. Armanini, P. Chini, P. Cioccolo, F. Provasoli, G. Audisio, Polym. Degrad. Stab. 79 (2002) 139.
  9. F.M. Pearce, Y.P. Khanna, D. Raucher, Thermal Characterization of Polymeric Materials, Academic Press, New York, USA, 1981, Chapter 8.
  10. V. Babrauskas, Ignition of Wood: A Review of the State of the Art. Interflam. 2001, Interscience Communications Ltd., London, UK, 2001, pp. 71-88.
  11. A.H. Buchanan, Structural Design for Fire Safety, John Wiley & Sons Ltd., 2001.
  12. M.J. Spearpoint, Predicting in Ignition and Burning Rate of Wood in the Cone Calorimeter using an Integral Model, NIST GCR 99-775, National Institute of Standards and Technology, Gaithersburg, USA, 1999.
  13. V. Babrauskas, The SFPE Handbook of Fire Protection Engineering, 3rd ed., National Fire Protection Association, Quincy, MA, USA, 2002.
  14. H.C. Tran, R.H. White, Fire Mater. 16 (4) (1992) 197, doi:10.1002/fam.810160406.
  15. Y.J. Chung, M. Spearpoint, Int. J. Eng. Perform. Based Fire Codes 9 (3) (2009) 118.
  16. J.B. Carle, J.L. Brown, in: G.S. Watt (Ed.), Wood as a Source of Solid Fuel, A Review, New Zealand Forest Service, Auckland, 1976.
  17. J. Tissari, K. Hytonen, J. Lyynranen, J. Jokinienmi, Atmos. Environ. 41 (37) (2007) 8330. https://doi.org/10.1016/j.atmosenv.2007.06.018
  18. M. Glasius, M. Ketzel, P. Wahlin, B. Jensen, J. Monster, R. Berkowicz, F. Palmgren, Atmos. Environ. 40 (37) (2006) 7115, doi:10.1016/j.atmosenv.2006.06.047.
  19. Y.J. Chung, J. Korean Ind. Eng. Chem. 18 (2007) 251.
  20. T. Meredith, A. Vale, Br. Med. J. 296 (6615) (1988) 77. https://doi.org/10.1136/bmj.296.6615.77
  21. H. Hauck, M. Neuberger, Eur. J. Appl. Physiol. Occup. Physiol. 53 (2) (1984) 186. https://doi.org/10.1007/BF00422585
  22. US OSHA, Chemical sampling information: carbon monoxide, carbon dioxide, carbon monoxide (by COHb), 2008, http://www.osha.gov/dts/chemicalsampling/ data/CH-225600.html, http://www.osha.gov/dts/chemicalsampling/data/CH- 225400.html and http://www.osha.gov/dts/chemicalsampling/data/CH-225610. html.
  23. G. Ballard-Tremeer, H.H. Jawurek, Biomass Bioenergy 11 (5) (1996) 419. https://doi.org/10.1016/S0961-9534(96)00040-2
  24. ISO 3130, Wood-determination of moisture content for physical and mechanical tests, 1975.
  25. ISO 5660-1, Reaction-to-fire tests - heat release, smoke production and mass loss rate - part 1: heat release rate (cone calorimeter method) - part 2: smoke production rate (dynamic measurement), 2002.
  26. EN 13823, Reaction to fire tests for building products. Building products excluding floorings exposed to the thermal attack by a single burning item, 2002.
  27. V. Babrauskas, S.J. Grayson, Heat Release in Fires, E & FN Spon (Chapman and Hall), London, UK, 1992.
  28. V. Babrauskas, Fire Mater. 8 (2) (1984) 81, doi:10.1002/fam.810080206.
  29. R.T. Hull, K.T. Paul, Fire Saf. J. 42 (5) (2007) 340, doi:10.1016/j.firesaf.2006.12.006.

Cited by

  1. EPDM/PP에 바탕을 둔 에칠렌-프로필렌 디엔 모노머/폴리프로필렌/클레이 나노복합체의 연소특성 vol.28, pp.4, 2011, https://doi.org/10.12925/jkocs.2011.28.4.5
  2. Estimating the fire behavior of wood flooring using a cone calorimeter vol.110, pp.2, 2010, https://doi.org/10.1007/s10973-011-1902-1
  3. A Model to Predict Carbon Monoxide of Woods under External Heat Flux - Part I: Theory vol.62, pp.None, 2013, https://doi.org/10.1016/j.proeng.2013.08.083
  4. 비스-디알킬아미노알킬 포스핀산으로 처리된 목재의 연소특성 vol.27, pp.4, 2010, https://doi.org/10.7731/kifse.2013.27.4.21
  5. 돈분, 계분 그리고 혼합물에 대한 연소특성 vol.24, pp.6, 2010, https://doi.org/10.14478/ace.2013.1076
  6. 비스-디알킬아미노알킬 포스핀산 유도체로 처리된 리기다 소나무 시험편의 연소특성 vol.24, pp.6, 2013, https://doi.org/10.14478/ace.2013.1087
  7. 알킬렌디아미노알킬-비스-포스폰산 유도체로 처리된 리기다 소나무 시험편의 연소특성 vol.27, pp.5, 2013, https://doi.org/10.7731/kifse.2013.27.5.57
  8. 알킬렌디아미노알킬-비스-포스폰산으로 처리된 목재의 연소특성 vol.27, pp.6, 2010, https://doi.org/10.7731/kifse.2013.27.6.057
  9. 알킬렌디아미노알킬-비스-포스폰산 금속염으로 처리된 리기다 소나무 시험편의 연소특성 vol.27, pp.6, 2010, https://doi.org/10.7731/kifse.2013.27.6.070
  10. 메틸렌피페라지노메틸-비스-포스폰산 금속염으로 처리된 목재 시험편의 연소특성 vol.28, pp.3, 2010, https://doi.org/10.7731/kifse.2014.28.3.055
  11. 알킬렌디아미노알킬-비스-포스폰산 유도체에 의해 처리된 중밀도섬유판의 연소성 vol.28, pp.4, 2014, https://doi.org/10.7731/kifse.2014.28.4.057
  12. 알킬렌디아미노알킬-비스-포스폰산으로 처리된 중밀도섬유판의 연소특성 vol.25, pp.5, 2010, https://doi.org/10.14478/ace.2014.1066
  13. 비스-디메틸아미노메틸 포스핀산과 알킬렌디아미노알킬-비스-포스폰산 유도체에 의해 처리된 중밀도 섬유판의 연소특성 vol.28, pp.5, 2010, https://doi.org/10.7731/kifse.2014.28.5.071
  14. 알킬렌디아미노알킬-비스-포스폰산 금속염으로 처리된 리기다 소나무판의 연소성질 vol.28, pp.6, 2010, https://doi.org/10.7731/kifse.2014.28.6.028
  15. 인-질소 첨가제로 처리된 리기다 소나무 시험편의 연소특성 vol.29, pp.6, 2010, https://doi.org/10.7731/kifse.2015.29.6.013
  16. 암모늄염으로 도포시킨 베니어판의 연소 시에 발생하는 연소가스 평가 vol.30, pp.5, 2016, https://doi.org/10.7731/kifse.2016.30.5.093
  17. Combustion performance of engineered bamboo from cone calorimeter tests vol.75, pp.2, 2010, https://doi.org/10.1007/s00107-016-1074-6
  18. 건축용 난연 목재 개발에 대한 실험 연구 vol.32, pp.5, 2017, https://doi.org/10.14346/jkosos.2017.32.5.149
  19. 건축용 목재의 열 유해성 평가에 대한 연구 vol.32, pp.5, 2010, https://doi.org/10.7731/kifse.2018.32.5.006
  20. Pyrolysis and Combustion Behavior of Pinewood After the Addition of Flame Retardants vol.8, pp.1, 2010, https://doi.org/10.1520/acem20180141
  21. 화재 시 가연성 물질의 연기 위험성 평가 vol.31, pp.3, 2010, https://doi.org/10.14478/ace.2020.1024
  22. 화재 시 연소성 물질에 대한 화재 위험성 등급 평가 vol.32, pp.1, 2021, https://doi.org/10.14478/ace.2020.1103
  23. 화재로부터 연소성 물질에 대한 연기위험성 및 연기위험성 등급 평가 vol.32, pp.2, 2010, https://doi.org/10.14478/ace.2021.1016
  24. 화재 발생 시 목재 수종의 화재위험성 등급 평가 vol.32, pp.4, 2010, https://doi.org/10.14478/ace.2021.1051
  25. Biological Control of Leaf Blight Disease Caused by Pestalotiopsis maculans and Growth Promotion of Quercus acutissima Carruth Container Seedlings Using Bacillus velezensis CE 100 vol.22, pp.20, 2010, https://doi.org/10.3390/ijms222011296