DOI QR코드

DOI QR Code

Batch degradation of phenol in a spouted bed bioreactor system

  • El-Naas, Muftah H. (Chemical and Petroleum Engineering Department, UAE University) ;
  • Al-Zuhair, Sulaiman (Chemical and Petroleum Engineering Department, UAE University) ;
  • Makhlouf, Souzan (Chemical and Petroleum Engineering Department, UAE University)
  • Received : 2009.03.22
  • Accepted : 2009.09.09
  • Published : 2010.03.25

Abstract

Bacterial biotreatment has gained a lot of attention in recent years as an alternative method for the removal of phenol from wastewater. Under aerobic conditions, Pseudomonas putida utilize phenol as a source of carbon and energy. In this work, P. putida was immobilized in Polyvinyl Alcohol (PVA) gel particles and used in a spouted bed bioreactor to remove phenol from wastewater. The effects of initial phenol concentration and air flow rate on the rate of aerobic phenol removal were investigated. The experimental results were used to develop a dynamic model to describe the utilization of phenol for the bacterial growth in spouted bed bioreactor.

Keywords

Acknowledgement

Supported by : Japan Cooperation Center, Petroleum (JCCP)

References

  1. S.C. Atlow, L. Bonadonna-Aparo, A.M. Klibanov, Biotechnol. Bioeng. 26 (1984) 599 https://doi.org/10.1002/bit.260260607
  2. S.P. Muna, J.P. Jang, J. Ind. Eng. Chem. 15 (5) (2009) 743. https://doi.org/10.1016/j.jiec.2009.09.056
  3. V.M. Brown, D.H.M. Jordan, B.A. Tiller, Water Resour. 1 (1967) 587.
  4. T.P. Chung, H.Y. Tseng, R.S. Juang, Proc. Biochem. 38 (2003) 1497. https://doi.org/10.1016/S0032-9592(03)00038-4
  5. A. Farrell, B. Quilty, Water Resour. 36 (2002) 2443.
  6. A. Nuhoglu, Y. Beste, Proc. Biochem. 40 (2005) 1233. https://doi.org/10.1016/j.procbio.2004.04.003
  7. G. Knoll, J. Winter, Appl. Microbiol. Biotechnol. 25 (1987) 384.
  8. G. Gonzalez, G. Herrera, Ma. T. Garcia, M. Pena, Bioresour. Technol. 80 (2001) 137. https://doi.org/10.1016/S0960-8524(01)00076-1
  9. A. Kumar, S. Kumar, S. Kumar, Biochem. Eng. J. 22 (2005) 151 https://doi.org/10.1016/j.bej.2004.09.006
  10. S. Hwang, C.H. Lee, I.S. Ahn, J. Ind. Eng. Chem. 14 (4) (2008) 487. https://doi.org/10.1016/j.jiec.2008.02.008
  11. B. Marrot, A. Barrios-Martinez, P. Moulin, N. Roche, Biochem. Eng. J. 30 (2006) 174. https://doi.org/10.1016/j.bej.2006.03.006
  12. O. Kira, H.M. Budman, C.W. Robinson, Biotechnol. Bioeng. 70 (2000) 291. https://doi.org/10.1002/1097-0290(20001105)70:3<291::AID-BIT6>3.0.CO;2-Y
  13. L. Tranvik, P. Larsson, L. Okla, O. Regnell, Environ. Toxicol. Chem. 10 (1991) 195. https://doi.org/10.1002/etc.5620100207
  14. I.N. Sgountzos, S. Pavlou, C.A. Paraskeva, A.C. Payatakes, Biochem. Eng. J. 30 (2006) 164. https://doi.org/10.1016/j.bej.2006.03.005
  15. M. El-Naas, S. Al-Muhtaseb, S. Makhlouf, J. Hazard. Mater. 164 (2008) 720.
  16. V. Riis, H. Lorbeer, W. Babel, Biol. Biochem. 30 (1998) 1573. https://doi.org/10.1016/S0038-0717(97)00232-0
  17. A.S. Embaby. An investigation into the potential of immobilized nitrifiers in wastewater treatment. M.Sc. Thesis, UAE University, UAE, 2004.

Cited by

  1. Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon vol.162, pp.3, 2010, https://doi.org/10.1016/j.cej.2010.07.007
  2. Aerobic Biodegradation of Phenols: A Comprehensive Review vol.42, pp.16, 2010, https://doi.org/10.1080/10643389.2011.569872
  3. Enhanced Phenol and Chlorinated Phenols Removal by Combining Ozonation and Biodegradation vol.223, pp.7, 2010, https://doi.org/10.1007/s11270-012-1172-y
  4. Preparation, characterization, and phenol adsorption of activated carbons from oxytetracycline bacterial residue vol.62, pp.12, 2010, https://doi.org/10.1080/10962247.2012.716013
  5. A novel preparation for a PVA/l-histidine/AgNPs membrane and its antibacterial property vol.5, pp.67, 2010, https://doi.org/10.1039/c5ra08721j
  6. Study on the preparation of straw activated carbon and its phenol adsorption properties vol.52, pp.None, 2010, https://doi.org/10.1088/1742-6596/52/1/012101
  7. Biodegradation of phenolic components in wastewater by micro algae: a review vol.162, pp.None, 2010, https://doi.org/10.1051/matecconf/201816205009
  8. Treatment of azo dye (congo red) solution in fluidized bed bioreactor with simultaneous approach of adsorption coupled with biodegradation: optimization by response surface methodology and toxicity as vol.21, pp.8, 2019, https://doi.org/10.1007/s10098-019-01736-7
  9. Optimized parameters using Box–Behnken design methodology facilitate enhanced phenol degradation of Bacillus cereus PB1 by immobilization and adsorption vol.30, pp.2, 2010, https://doi.org/10.1002/tqem.21708
  10. Eco friendly adsorbents for removal of phenol from aqueous solution employing nanoparticle zero-valent iron synthesized from modified green tea bio-waste and supported on silty clay vol.36, pp.None, 2010, https://doi.org/10.1016/j.cjche.2020.07.031
  11. Phenol biodegradation by plant growth promoting bacterium, S. odorifera: kinetic modeling and process optimization vol.204, pp.1, 2010, https://doi.org/10.1007/s00203-021-02691-y