DOI QR코드

DOI QR Code

A carbon electrode fabricated using a poly(vinylidene fluoride) binder controlled the Faradaic reaction of carbon powder

  • Choi, Ji-Young (Department of Chemical Engineering, Kongju National University) ;
  • Choi, Jae-Hwan (Department of Chemical Engineering, Kongju National University)
  • Received : 2009.07.24
  • Accepted : 2009.08.18
  • Published : 2010.05.25

Abstract

A carbon electrode for capacitive deionization (CDI) was fabricated by casting a slurry that was a mixture of activated carbon powder (ACP) and poly(vinylidene fluoride) (PVdF) dissolved in di-methylacetamide (DMAc) on the current collector. Electrochemical properties and adsorption/desorption behaviors of the carbon electrodes prepared with different PVdF contents (9-18 wt%) were characterized using cyclic voltammetry, chronoamperometry, and impedance spectroscopy methods. From the SEM images, carbon powders were coated with the PVdF binder and bound together. Capacitances of carbon electrodes were estimated in the range of 75.3-69.6 F/g, decreasing in tandem with PVdF contents, but the decrease was not significant. From cyclic voltammetric and chronoamperometricmeasurements, the electrochemical behaviors of the carbon electrodes were dependent not only on the electric double layer capacitance, but also on Faradaic reactions. However, Faradaic currents resulted from an electrochemical redox reaction of carbon surface controlled by the polymer binder. These results indicate that the electrochemical reaction on the carbon surface was suppressed due to the PVdF binder.

Keywords

References

  1. T. Younos, K.E. Tulou, J. Contemp. Water Res. Educ. 132 (2005) 3
  2. C.H. Shin, R. Johnson, J. Ind. Eng. Chem. 15 (2009) 613. https://doi.org/10.1016/j.jiec.2009.09.030
  3. H. Strathmann, Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam, 2004
  4. J.Y. Lee, T.S. Kwon, K. Baek, J.W. Yang, J. Ind. Eng. Chem. 15 (2009) 354. https://doi.org/10.1016/j.jiec.2008.12.007
  5. K.C. Leonard, J.R. Genthe, J.L. Sanfilippo, W.A. Zeltner, M.A. Anderson, Electrochim. Acta 54 (2009) 5286. https://doi.org/10.1016/j.electacta.2009.01.082
  6. Y. Oren, H. Tobias, A. Soffer, J. Electroanal. Chem. 162 (1984) 87.
  7. J.C. Farmer, D.V. Fix, G.C. Mack, R.W. Pekala, J.F. Poco, J. Electrochem. Soc. 143 (1996) 159. https://doi.org/10.1149/1.1836402
  8. J.C. Farmer, D.V. Fix, G.C. Mack, R.W. Pekala, J.F. Poco, J. Appl. Electrochem. 26 (1996) 1007.
  9. P. Xu, J.E. Drewes, D. Heil, G. Wang, Water Res. 42 (2008) 2605. https://doi.org/10.1016/j.watres.2008.01.011
  10. L. Zou, L. Li, H. Song, G. Morris, Water Res. 42 (2008) 2340. https://doi.org/10.1016/j.watres.2007.12.022
  11. T.Y. Ying, K.L. Yang, S. Yiacoumi, C. Tsouris, J. Colloid Interface Sci. 250 (2002) 18. https://doi.org/10.1006/jcis.2002.8314
  12. L. Zou, G. Morris, D. Qi, Desalination 225 (2008) 329. https://doi.org/10.1016/j.desal.2007.07.014
  13. M.W. Ryoo, J.H. Kim, G. Seo, J. Colloid Interface Sci. 264 (2003) 414. https://doi.org/10.1016/S0021-9797(03)00375-8
  14. J.A. Lim, N.S. Park, J.S. Park, J.H. Choi, Desalination 238 (2009) 37. https://doi.org/10.1016/j.desal.2008.01.033
  15. T.J. Welgemoed, C.F. Schutte, Desalination 183 (2005) 327. https://doi.org/10.1016/j.desal.2005.02.054
  16. E. Ayranci, B.E. Conway, Anal. Chem. 73 (2001) 1181. https://doi.org/10.1021/ac000736e
  17. M.W. Ryoo, G. Seo, Water Res. 37 (2003) 1527. https://doi.org/10.1016/S0043-1354(02)00531-6
  18. E. Ayranci, B.E. Conway, J. Electroanal. Chem. 100 (2001) 513.
  19. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, Z. Sun, Water Res. 42 (2008) 4923. https://doi.org/10.1016/j.watres.2008.09.026
  20. Y. Gao, L. Pank, Y.P. Zhang, Y.W. Chen, Z. Sun, Surf. Rev. Lett. 14 (2007) 1033. https://doi.org/10.1142/S0218625X07010597
  21. C.J. Gabelich, T.D. Tran, I.H. Suffet, Environ. Sci. Technol. 36 (2002) 3010. https://doi.org/10.1021/es0112745
  22. H.H. Jung, S.W. Hwang, S.H. Hyun, K.H. Lee, G.T. Kim, Desalination 216 (2007) 377. https://doi.org/10.1016/j.desal.2006.11.023
  23. K. Yang, T. Ying, S. Yiacoumi, Langmuir 17 (2001) 1961. https://doi.org/10.1021/la001527s
  24. K.K. Park, J.B. Lee, P.Y. Park, S.W. Yoon, J.S. Moon, H.M. Eum, C.W. Lee, Desalination 206 (2007) 86. https://doi.org/10.1016/j.desal.2006.04.051
  25. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York, 1999.
  26. C.T. Hsieh, H. Teng, Carbon 40 (2002) 667. https://doi.org/10.1016/S0008-6223(01)00182-8
  27. H. Pro¨bstle, M. Wiener, J. Fricke, J. Porous Mater. 10 (2003) 213.
  28. K.L. Yang, S. Yiacoumi, C. Tsouris, J. Electroanal. Chem. 540 (2003) 159. https://doi.org/10.1016/S0022-0728(02)01308-6
  29. K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, Wiley, New York, 1988.
  30. E. Gileadi, Electrode Kinetics for Chemists, Chemical Engineers, and Materials Scientists, Wiley–VCH, New York, 1993.
  31. S.H. Yoon, J.W. Lee, T.H. Hyeon, S.M. Oh, J. Electrochem. Soc. 147 (2000) 2507.
  32. H. Probstle, C. Schmitt, J. Fricke, J. Power Sources 105 (2002) 189. https://doi.org/10.1016/S0378-7753(01)00938-7

Cited by

  1. Synthesis of carbon-coated graphene electrodes and their electrochemical performance vol.56, pp.18, 2010, https://doi.org/10.1016/j.electacta.2011.04.092
  2. Synthesis of nano-scale coated manganese oxide on graphite nanofibers and their high electrochemical performance vol.161, pp.17, 2010, https://doi.org/10.1016/j.synthmet.2011.07.003
  3. Capacitance Improvement and Electrochemical Characteristics of Silica-Coated Carbon Electrodes for Capacitive Deionization Application vol.159, pp.12, 2010, https://doi.org/10.1149/2.022301jes
  4. Effect of ball milling on electrochemical characteristics of walnut shell-based carbon electrodes for EDLCs vol.155, pp.None, 2012, https://doi.org/10.1016/j.micromeso.2012.01.006
  5. Studies on the Desalination of NaCl Solution with Activated Carbon Coating Electrodes by Electrosorption and Kinetic Analysis vol.581, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/amr.581-582.743
  6. Capacitive Deionization Performance of Activated Carbon Electrodes Prepared by a Novel Liquid Binder vol.48, pp.2, 2010, https://doi.org/10.1080/01496395.2012.675000
  7. Preparation and application of reduced graphene oxide as the conductive material for capacitive deionization vol.15, pp.1, 2010, https://doi.org/10.5714/cl.2014.15.1.038
  8. 축전식 탈염 공정을 위한 메조포러스 탄소 전극 vol.17, pp.1, 2010, https://doi.org/10.5229/jkes.2013.17.1.57
  9. 광산수의 탈염을 위한 축전식 탈염기술의 적용 vol.17, pp.1, 2014, https://doi.org/10.5229/jkes.2014.17.1.37
  10. Development of an Ion Removal Technique Based on Capacitive Deionization for Treatment of Rinse Water from Incineration Ash vol.12, pp.3, 2010, https://doi.org/10.2965/jwet.2014.259
  11. 불소화고분자와 아민화된 폴리이서이미드 이온교환막을 적용한 축전식 탈염공정의 성능 연구 vol.25, pp.1, 2010, https://doi.org/10.14579/membrane_journal.2015.25.1.60
  12. 두 가지 유로 형태에 따라 이온교환수지를 채운 축전식 탈염기술 vol.18, pp.1, 2010, https://doi.org/10.5229/jkes.2015.18.1.24
  13. Synthesis and Characterization of Phase Pure NiO Nanoparticles via the Combustion Route using Different Organic Fuels for Electrochemical Capacitor Applications vol.6, pp.1, 2010, https://doi.org/10.5229/jecst.2015.6.1.16
  14. Review on carbon-based electrode materials for application in capacitive deionization process vol.13, pp.12, 2016, https://doi.org/10.1007/s13762-016-1061-9
  15. Carbon electrode modified by KOH solution to improve performance of capacitive desalination vol.57, pp.38, 2010, https://doi.org/10.1080/19443994.2015.1087882
  16. A graphene-based flexible supercapacitor using trihexyl(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)imide ionic liquid electrolyte vol.4, pp.8, 2010, https://doi.org/10.1088/2053-1591/aa7b14
  17. Recent trends in removal and recovery of heavy metals from wastewater by electrochemical technologies vol.33, pp.4, 2010, https://doi.org/10.1515/revce-2016-0021
  18. Recent trends in removal and recovery of heavy metals from wastewater by electrochemical technologies vol.33, pp.4, 2010, https://doi.org/10.1515/revce-2016-0021
  19. Impregnation of Acetylene Black Electrodes with a Polytetrafluoroethylene Binder with an Aqueous Solution and Evaluation of Its Specific Double Layer Capacity vol.54, pp.1, 2018, https://doi.org/10.1134/s1023193517110076
  20. Electrochemical Investigation of Activated Carbon Electrode Supercapacitors vol.54, pp.3, 2010, https://doi.org/10.1134/s1023193517120096
  21. Aqueous-Processed, High-Capacity Electrodes for Membrane Capacitive Deionization vol.52, pp.10, 2010, https://doi.org/10.1021/acs.est.7b05874
  22. Characteristics of Nitric Acid‐Modified Carbon Nanotubes and Desalination Performance in Capacitive Deionization vol.41, pp.9, 2010, https://doi.org/10.1002/ceat.201700448
  23. Electron beam-based fabrication of crosslinked hydrophilic carbon electrodes and their application for capacitive deionization vol.9, pp.17, 2010, https://doi.org/10.1039/c8ra10527h
  24. Role of a Printed Circuit Board Copper Clad Current Collector in Supercapacitor Application vol.48, pp.9, 2010, https://doi.org/10.1007/s11664-019-07365-6
  25. Rapid Inversion of Surface Charges in Heteroatom‐Doped Porous Carbon: A Route to Robust Electrochemical Desalination vol.30, pp.9, 2020, https://doi.org/10.1002/adfm.201909387
  26. Characteristics and Vanadium Adsorption Performance of Resin/Carbon Composite Electrodes in Capacitive Deionization vol.43, pp.8, 2020, https://doi.org/10.1002/ceat.201900590
  27. Editors’ Choice-Review-Activated Carbon Electrode Design: Engineering Tradeoff with Respect to Capacitive Deionization Performance vol.167, pp.14, 2010, https://doi.org/10.1149/1945-7111/abbfd7
  28. Poly(Vinyl Alcohol)-Bonded Carbon Electrodes for Desalination of Brackish Water Using Capacitive Deionization vol.101, pp.2, 2010, https://doi.org/10.1007/s40034-020-00165-2
  29. Optimization of preparation conditions of composite electrodes for selective adsorption of vanadium in CDI by response surface methodology vol.168, pp.None, 2021, https://doi.org/10.1016/j.cherd.2021.01.032
  30. Frontiers of Membrane Desalination Processes for Brackish Water Treatment: A Review vol.11, pp.4, 2010, https://doi.org/10.3390/membranes11040246
  31. Titanium Dioxide/Activated Carbon Electrode with Polyurethane Binder for the Removal of Indium Ions via Capacitive Deionization vol.9, pp.8, 2010, https://doi.org/10.3390/pr9081427