DOI QR코드

DOI QR Code

Surface modification of silica nanoparticles with hydrophilic polymers

  • Park, Jung-Tae (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Seo, Jin-Ah (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Ahn, Sung-Hoon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kang, Sang-Wook (Department of Chemistry, Sangmyung University)
  • Received : 2010.01.14
  • Accepted : 2010.02.01
  • Published : 2010.07.25

Abstract

Silica ($SiO_2$) nanoparticles grafted with a water-soluble polymer, i.e. nonionic poly(oxyethylene methacrylate) (POEM) and ionic poly(styrene sulfonic acid) (PSSA) were prepared via a three-step synthetic approach: (1) the activation of silanol group (-OH) in the surface of $SiO_2$ nanoparticles, (2) surface modification to chlorine (-Cl) group and (3) graft polymerization from nanoparticles via atom transfer radical polymerization (ATRP). The successful synthesis and chemical compositions in the modified $SiO_2$ nanoparticles were confirmed using FT-IR, UV-visible spectroscopy and X-ray photoelectron spectroscopy (XPS). Thermogravimetric analysis (TGA) results indicated that the grafting amounts of polymer in the nanoparticles were 5 and 8 wt% for POEM and PSSA, respectively. X-ray diffraction (XRD) showed that the grafting of polymers did not significantly alter the microstructure of $SiO_2$ nanoparticles. Grafting of water-soluble polymer improved the dispersion properties of nanoparticles in alcohol, as verified by scanning electron microscopy (SEM).

Keywords

Acknowledgement

Supported by : KIAT

References

  1. J. Du, Y. Chen, Macromolecules 37 (2004) 5710. https://doi.org/10.1021/ma0497097
  2. S. Foster, M. Konrad, J. Mater. Chem. 13 (2003) 2671. https://doi.org/10.1039/b307512p
  3. J.-W. Ha, Y.-W. Do, J.-H. Park, C.-H. Han, J. Ind. Eng. Chem. 15 (2009) 670. https://doi.org/10.1016/j.jiec.2009.09.042
  4. Y.Y. Yu, C.Y. Chen, W.C. Chen, Polymer 44 (2003) 593. https://doi.org/10.1016/S0032-3861(02)00824-8
  5. W.J. Lin, W.C. Chen, W.C. Wu, Y.H. Niu, J. Aky, Macromolecules 37 (2004) 2335. https://doi.org/10.1021/ma0499573
  6. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295 (2002) 2425. https://doi.org/10.1126/science.1069156
  7. J.-Y. Kim, H.-M. Koo, K.-J. Ihn, K.-D. Suh, J. Ind. Eng. Chem. 15 (2009) 103. https://doi.org/10.2298/CICEQ0902103L
  8. J. Guo, W.Y. Yang, C.C. Wang, J. He, J.Y. Chen, Chem. Mater. 18 (2006) 5554. https://doi.org/10.1021/cm060976w
  9. H. Sertchook, H. Elimelech, C. Makarov, R. Khalfin, Y. Cohen, M. Shuster, J. Am. Chem. Soc. 129 (2007) 98. https://doi.org/10.1021/ja0653167
  10. L. Chen, J. Zhu, Q. Li, S. Chun, Y.R. Wang, Eur. Polym. J. 43 (2007) 4593. https://doi.org/10.1016/j.eurpolymj.2007.08.008
  11. S. Chen, J. Zhu, Y.F. Shen, C.H. Hu, L. Chen, Langmuir 23 (2007) 850. https://doi.org/10.1021/la062210g
  12. L. Guo, S. Chen, L. Chen, Colloids Polym. Sci. 285 (2007) 1593. https://doi.org/10.1007/s00396-007-1730-9
  13. Y.-J.Lee, K.-W. Jun, J.-Y. Park, H.S. Potdar, R.C. Chikate, J. Ind.Eng. Chem.14(2008) 38. https://doi.org/10.1016/j.jiec.2007.08.009
  14. J. Pyun, K. Matyjaszewski, Chem. Mater. 13 (2001) 3436. https://doi.org/10.1021/cm011065j
  15. T. Vonwerne, E.P. Paatten, J. Am. Chem. Soc. 123 (2001) 7497. https://doi.org/10.1021/ja010235q
  16. T. Vonwerne, E.P. Paatten, J. Am. Chem. Soc. 121 (1999) 7409. https://doi.org/10.1021/ja991108l
  17. S. Spange, Prog. Polym. Sci. 25 (2000) 781. https://doi.org/10.1016/S0079-6700(00)00014-9
  18. J. Ueda, W. Gang, K. Shirai, T. Yamauchi, N. Tsubokawa, Polym. Bull. 60 (2008) 617. https://doi.org/10.1007/s00289-008-0899-5
  19. Q.Y. Zhou, S.X. Wang, X.W. Fan, R. Advincula, Langmuir 18 (2002) 3324. https://doi.org/10.1021/la015670c
  20. M.A. Jordi, T.A.P. Seery, J. Am. Chem. Soc. 127 (2005) 4416. https://doi.org/10.1021/ja044456i
  21. J. Ueda, S. Sato, A. Tsunokawa, T. Yamauchi, N. Tsubokawa, Eur. Polym. J. 41 (2005) 193. https://doi.org/10.1016/j.eurpolymj.2004.09.010
  22. G. Laruelle, J. Parvole, J. Francois, L. Billon, Polymer 45 (2004) 5013. https://doi.org/10.1016/j.polymer.2004.05.030
  23. M.H. Stenzel, L. Zhang, W.T.S. Huck, Macromol. Rapid Commun. 27 (2006) 1121. https://doi.org/10.1002/marc.200600223
  24. J. Pyun, T. Kowalewski, K. Matyjaszewski, Macromol. Rapid. Commun. 24 (2003) 1043. https://doi.org/10.1002/marc.200300078
  25. H. Zhang, X.P. Lei, Z.X. Su, P. Liu, J. Polym. Res. 14 (2007) 253. https://doi.org/10.1007/s10965-007-9104-z
  26. D. Li, X. Sheng, B.J. Zhao, J. Am. Chem. Soc. 127 (2005) 6248. https://doi.org/10.1021/ja0422561
  27. X. Zuoa, S. Yua, X. Xua, R. Baoa, J. Xua, W. Quc, J. Membr. Sci. 328 (2009) 23. https://doi.org/10.1016/j.memsci.2008.08.012
  28. X. Cai, R.Y. Hong, L.S. Wang, X.Y. Wang, H.Z. Li, Y. Zheng, D.G. Wei, Chem. Eng. J. 151 (2009) 380. https://doi.org/10.1016/j.cej.2009.03.060
  29. L. Zhou, W. Yuan, J. Yuan, X. Hong, Mater. Lett. 62 (2008) 1372. https://doi.org/10.1016/j.matlet.2007.08.057
  30. J.T. Park, J.H. Koh, J.K. Koh, J.H. Kim, Appl. Surf. Sci. 255 (2009) 3739. https://doi.org/10.1016/j.apsusc.2008.10.027
  31. A. Mokrini, J.L. Acosta, Polymer 42 (2001) 9. https://doi.org/10.1016/S0032-3861(00)00353-0
  32. D.K. Lee, Y.W. Kim, J.K. Choi, B.R. Min, J.H. Kim, J. Appl. Polym. Sci. 107 (2008) 819. https://doi.org/10.1002/app.27122
  33. J.W. Cho, K.I. Sul, Polymer 42 (2001) 727. https://doi.org/10.1016/S0032-3861(00)00371-2
  34. E. Tang, H. Liu, L. Sun, E. Zheng, G. Cheng, Eur. Polym. J. 43 (2007) 4210. https://doi.org/10.1016/j.eurpolymj.2007.05.015
  35. A. Duran, C. Serna, V. Fornes, J.M.F. Navarro, J. Non-Cryst. Solids 82 (1986) 69. https://doi.org/10.1016/0022-3093(86)90112-2
  36. Y. Tai, J. Qiana, Y. Zhang, J. Huang, Chem. Eng. J. 141 (2008) 354. https://doi.org/10.1016/j.cej.2008.03.012
  37. C. Bi, H. Zhang, Y. Zhang, X. Zhu, Y. Ma, H. Dai, S. Xiao, J. Power Sources 184 (2008) 197. https://doi.org/10.1016/j.jpowsour.2008.06.019
  38. G. Yang, H. Ma, L. Yu, P. Zhang, J. Colloid Interf. Sci. 333 (2009) 776. https://doi.org/10.1016/j.jcis.2009.02.024
  39. B.D. Yang, K.H. Yoon, K.W. Chung, Synth. Met. 143 (2004) 25. https://doi.org/10.1016/j.synthmet.2003.10.006
  40. G. Beamson, D. Briggs, J. Chem. Educ. 70 (1993) A25.
  41. T.P. Nguyen, P.L. Rendu, V.H. Tran, P. Molinie, Polym. Adv. Technol. 9 (1998) 101. https://doi.org/10.1002/(SICI)1099-1581(199802)9:2<101::AID-PAT719>3.0.CO;2-A
  42. K. Zhang, W. Wu, H. Meng, K. Guo, J.F. Chen, Powder Technol. 190 (2009) 393. https://doi.org/10.1016/j.powtec.2008.08.022
  43. S. Hayashi, K. Fujiki, N. Tsubokawa, React. Funct. Polym. 46 (2000) 193. https://doi.org/10.1016/S1381-5148(00)00053-5

Cited by

  1. Synthesis, characterization and in vitro cytotoxicity of Pt-TiO2 nanoparticles vol.17, pp.3, 2010, https://doi.org/10.1007/s10450-011-9330-x
  2. Synthesis and characterization of poly(2‐hydroxyethyl methacrylate)‐functionalized Fe‐Au/core‐shell nanoparticles vol.124, pp.6, 2012, https://doi.org/10.1002/app.35530
  3. Synthesis, Characterization, and Hydrolytic Degradation of Polylactide/Poly(ethylene glycol)/Nano-silica Composite Films vol.49, pp.4, 2010, https://doi.org/10.1080/10601325.2012.662077
  4. A Facile Synthesis of PMMA-SiO2NanocompositesviaSurface Initiated Radical Polymerization vol.565, pp.1, 2010, https://doi.org/10.1080/15421406.2012.692262
  5. Synthesis and Characterization of Poly(oxyethylene methacrylate) Coated TiO2NanoparticlesviaSurface Thiol-Lactam Initiated Radical Polymerization vol.565, pp.1, 2010, https://doi.org/10.1080/15421406.2012.693283
  6. Interaction Mechanism of Nano-silicon Dioxide Modified by Poly(amidoamine) Dendrimers vol.25, pp.5, 2012, https://doi.org/10.1088/1674-0068/25/05/592-604
  7. Synthesis and characterization of chemically anchored adenosine with PHEMA grafted gold nanoparticles vol.258, pp.7, 2012, https://doi.org/10.1016/j.apsusc.2011.10.140
  8. Modification of silica nanoparticles with hydrophilic sulfonated polymers by using surface-initiated redox polymerization vol.21, pp.10, 2010, https://doi.org/10.1007/s13726-012-0073-7
  9. Synthesis of cationic polyacrylamide/silica nanocomposites from inverse emulsion polymerization and their flocculation property for papermaking vol.411, pp.None, 2010, https://doi.org/10.1016/j.colsurfa.2012.06.036
  10. A novel route for the synthesis of poly(2‐hydroxyethyl methacrylate) grafted TiO2 nanoparticles via surface thiol‐lactam initiated radical polymerization vol.127, pp.1, 2013, https://doi.org/10.1002/app.37879
  11. Grafting of water‐soluble sulfonated monomers onto functionalized fumed silica nanoparticles via surface‐initiated redox polymerization in aqueous medium vol.62, pp.5, 2013, https://doi.org/10.1002/pi.4351
  12. Interaction mechanisms between poly(amido‐amine) and nano‐silicon dioxide vol.113, pp.8, 2013, https://doi.org/10.1002/qua.24260
  13. Rheological behavior and film characterization of fumed silica dispersion in carbodiimide based UV-curable coating material vol.21, pp.2, 2010, https://doi.org/10.1007/s13233-013-1012-y
  14. Synthesis of poly(styrene-co-acrylonitrile) copolymer brushes on silica nanoparticles through surface-initiated polymerization vol.22, pp.4, 2010, https://doi.org/10.1007/s13726-013-0122-x
  15. Ab initio Study of Complexation Process between Poly(amido-amine) and Nano-Silicon Dioxide vol.26, pp.3, 2010, https://doi.org/10.1063/1674-0068/26/03/277-286
  16. Functionalized magnetic core-shell Fe3O4@SiO2 nanoparticles for sensitive detection and removal of Hg2+ vol.15, pp.6, 2013, https://doi.org/10.1007/s11051-013-1716-0
  17. Silica nanoparticles grafted with phthalocyanines: photophysical properties and studies in artificial lysosomal fluid vol.37, pp.9, 2013, https://doi.org/10.1039/c3nj00439b
  18. Facile and Sensitive Epifluorescent Silica Nanoparticles for the Rapid Screening of EHEC vol.2013, pp.None, 2013, https://doi.org/10.1155/2013/706354
  19. Robust Superamphiphobic Coatings Based on Silica Particles Bearing Bifunctional Random Copolymers vol.5, pp.24, 2010, https://doi.org/10.1021/am404317c
  20. Grafting of hydrophilic monomers onto aminopropyl‐functionalized sodium montmorillonite via surface‐initiated redox polymerization vol.63, pp.3, 2010, https://doi.org/10.1002/pi.4593
  21. 실리카 나노입자에 의한 활성슬러지 활성도 저해 효과 분석 vol.28, pp.1, 2014, https://doi.org/10.11001/jksww.2014.28.1.47
  22. The influence of applied silica nanoparticles on a bio-renewable castor oil based polyurethane nanocomposite and its physicochemical properties vol.16, pp.20, 2014, https://doi.org/10.1039/c4cp00516c
  23. A Large Response Range Reflectometric Urea Biosensor Made from Silica-Gel Nanoparticles vol.14, pp.7, 2010, https://doi.org/10.3390/s140713186
  24. Synthesis of polymer-silica hybrid microparticles with defined geometry using surface initiated atom transfer radical polymerization vol.6, pp.16, 2015, https://doi.org/10.1039/c5py00228a
  25. Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles vol.6, pp.29, 2010, https://doi.org/10.1039/c5py00525f
  26. Transparent and Flexible Films of Thermoplastic Polyurethanes Incorporated by Nano-SiO2 Modified With 4,4′-Methylene Diphenyl Diisocyanate vol.64, pp.1, 2010, https://doi.org/10.1080/00914037.2014.886237
  27. Design and Fabrication of Well-Dispersed Polyvinylpyrrolidone/TiO2-Modified With Diacid N-Trimellitylimido-L-Leucine Nanohybrid via Ultrasonic Process vol.45, pp.2, 2010, https://doi.org/10.1080/15533174.2013.831450
  28. Preparation of bio-based surfactants from glycerol and dodecanol by direct etherification vol.17, pp.2, 2010, https://doi.org/10.1039/c4gc00818a
  29. Photocurable, Antimicrobial Quaternary Ammonium–modified Nanosilica vol.94, pp.10, 2010, https://doi.org/10.1177/0022034515599973
  30. The effect of functionalized SiO2 nanoparticles on the morphology and triazines separation properties of cellulose acetate membranes vol.34, pp.None, 2010, https://doi.org/10.1016/j.jiec.2015.10.031
  31. Thermal and morphology characterization study of bio‐active poly(amide‐imide)‐based nanocomposites reinforced with modified SiO2 nanoparticle with poly(vinyl alcohol) vol.37, pp.4, 2010, https://doi.org/10.1002/pc.23288
  32. Morin Flavonoid Adsorbed on Mesoporous Silica, a Novel Antioxidant Nanomaterial vol.11, pp.11, 2010, https://doi.org/10.1371/journal.pone.0164507
  33. Nanosized Powders as Reinforcement for Photoactive Composites (Overview) vol.56, pp.3, 2010, https://doi.org/10.1007/s11106-017-9880-x
  34. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes vol.117, pp.3, 2010, https://doi.org/10.1021/acs.chemrev.6b00314
  35. Promising gene delivery system based on polyethylenimine-modified silica nanoparticles vol.24, pp.4, 2010, https://doi.org/10.1038/cgt.2016.73
  36. Constructing a Multiple Covalent Interface and Isolating a Dispersed Structure in Silica/Rubber Nanocomposites with Excellent Dynamic Performance vol.10, pp.23, 2010, https://doi.org/10.1021/acsami.8b02358
  37. Monitoring the Surface Chemistry of Functionalized Nanomaterials with a Microfluidic Electronic Tongue vol.3, pp.3, 2010, https://doi.org/10.1021/acssensors.8b00056
  38. Fabrication of poly(vinyl alcohol) nanocomposites having different contents of modified SiO2 by vitamin B1 as biosafe and novel coupling agent to improve mechanical and thermal p vol.39, pp.suppl3, 2010, https://doi.org/10.1002/pc.24517
  39. Synthesis and characterization of a Ni nanoparticle stabilized on Ionic liquid‐functionalized magnetic Silica nanoparticles for tandem oxidative reaction of primary alcohols vol.32, pp.9, 2010, https://doi.org/10.1002/aoc.4452
  40. Nano silica-carbon-silver ternary hybrid induced antimicrobial composite films for food packaging application vol.19, pp.None, 2019, https://doi.org/10.1016/j.fpsl.2018.12.003
  41. Functionalization of halloysite nanotube surfaces via controlled living radical polymerization: covalent immobilization of penicillin for a bioactive interface vol.94, pp.5, 2010, https://doi.org/10.1002/jctb.5888
  42. Surface-Initiated Atom Transfer Radical Polymerization for the Preparation of Well-Defined Organic-Inorganic Hybrid Nanomaterials vol.12, pp.18, 2010, https://doi.org/10.3390/ma12183030
  43. Synthesis and characterization of highly durable and reusable superabsorbent core–shell particles vol.60, pp.2, 2020, https://doi.org/10.1002/pen.25284
  44. Structurally Designed Imine Skeletal Pyrenyl Pendant Pyridine Core Polybenzoxazine nSiO2/PBZ Hybrid Polymer Nanocomposites vol.33, pp.4, 2010, https://doi.org/10.14233/ajchem.2021.23094
  45. Improved dielectric and thermal properties of core-shell structured SiO2/polyolefin polymer composites for high-frequency copper clad laminates vol.544, pp.None, 2010, https://doi.org/10.1016/j.apsusc.2020.148911
  46. High-Throughput Fabrication of Antibacterial Starch/PBAT/AgNPs@SiO2 Films for Food Packaging vol.11, pp.11, 2010, https://doi.org/10.3390/nano11113062
  47. Synthesis of core-shell structure based on silica nanoparticles and methacrylic acid via RAFT method: An efficient pH-sensitive hydrogel for prolonging doxorubicin release vol.66, pp.None, 2010, https://doi.org/10.1016/j.jddst.2021.102896
  48. Fluoride removal from aqueous solutions using alginate beads modified with functionalized silica particles vol.1252, pp.None, 2010, https://doi.org/10.1016/j.molstruc.2021.132217