DOI QR코드

DOI QR Code

Synthesis of cuprous oxide using sodium borohydride under microwave irradiation and catalytic effects

  • Received : 2009.11.16
  • Accepted : 2010.01.13
  • Published : 2010.07.25

Abstract

Cuprous oxide nanoparticles were synthesized under microwave irradiation for 15 min to use as a catalyst. The product was confirmed by X-ray diffraction and transmission electron microscopy. The catalytic effect of cuprous oxide nanoparticles was investigated for the reduction of 4-nitrophenol to produce 4-aminophenol in the presence of $NaBH_4$. The above product was confirmed by UV-vis spectroscopy and liquid chromatography-mass spectroscopy.

Keywords

Acknowledgement

Supported by : Sahmyook University

References

  1. U. Kreibig, L. Ganzel, Surf. Sci. 156 (2-3) (1985) 678. https://doi.org/10.1016/0039-6028(85)90239-0
  2. A. Henglein, Chem. Rev. 89 (8) (1989) 1861. https://doi.org/10.1021/cr00098a010
  3. M.D. Morse, Chem. Rev. 86 (6) (1986) 1049. https://doi.org/10.1021/cr00076a005
  4. A. Inoue, B.L. Shen, J. Mater. Res. 18 (12) (2003) 2799. https://doi.org/10.1557/JMR.2003.0390
  5. S. Krongelb, L.T. Romankiw, J.A. Tornello, J. Res. Dev. 42 (5) (1998) 575.
  6. T. Mitsuyu, O. Yamakazi, K. Ohji, K. Wasa, Ferroelectrics 42 (1) (1982) 233. https://doi.org/10.1080/00150198208008116
  7. Y. Jiang, S. Decker, C. Mohs, K.J. Klabunde, J. Catal. 180 (1) (1998) 24. https://doi.org/10.1006/jcat.1998.2257
  8. U. Bjoerksten, J. Moser, M. Graetze, Chem. Mater. 6 (6) (1994) 858. https://doi.org/10.1021/cm00042a026
  9. J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura, N. Yamazoe, Sens. Actuators B 49 (1-2) (1998) 121. https://doi.org/10.1016/S0925-4005(98)00144-0
  10. M.M. Viitanen, W.P.A. Jansen, R.G. Welzenis, H.H. Brongersma, D.S. Brands, E.K. Poels, A. Bliek, J. Phys. Chem. B 103 (29) (1999) 6025. https://doi.org/10.1021/jp990375a
  11. W.P. Dow, T.J. Huang, J. Catal. 160 (2) (1996) 171. https://doi.org/10.1006/jcat.1996.0136
  12. M.Y. Shen, T. Yokouchi, S. Koyama, T. Goto, Phys. Rev. B 56 (20) (1997) 13066. https://doi.org/10.1103/PhysRevB.56.13066
  13. W. Shi, K. Lim, X. Liu, J. Appl. Phys. 81 (6) (1997) 2822. https://doi.org/10.1063/1.363939
  14. R.N. Briskman, Energy Mater. Sol. Cells 27 (4) (1992) 361. https://doi.org/10.1016/0927-0248(92)90097-9
  15. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Taracon, Nature 407 (2000) 496. https://doi.org/10.1038/35035045
  16. P.E. Jongh, D. Vanmaekelbergh, J.J. Kelly, Chem. Commun. (12) (1999) 1069. https://doi.org/10.1039/a901232j
  17. M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J.N. Kondo, K. Domen, Chem. Commun. (293) (1998) 357.
  18. K. Borgohain, J.B. Singh, M.V.R. Rao, T. Shripathi, S. Mahamuni, Phys. Rev. 61 (16) (2000) 11093. https://doi.org/10.1103/PhysRevB.61.11093
  19. R.V. Kumar, Y. Diamant, A. Gedanken, Chem. Mater. 12 (8) (2000) 2301. https://doi.org/10.1021/cm000166z
  20. H. Wang, J.Z. Xu, J.J. Zhu, H.Y. Chen, J. Cryst. Growth 244 (1) (2002) 88. https://doi.org/10.1016/S0022-0248(02)01571-3
  21. L. Gou, C.J. Murphy, Nano Lett. 3 (2) (2003) 231. https://doi.org/10.1021/nl0258776
  22. C.L. Kitchens, M.C. McLeod, C.B. Roberts, J. Phys. Chem. B 107 (41) (2003) 11331. https://doi.org/10.1021/jp0354090
  23. J.H. Lee, B.E. Park, Y.M. Lee, S.H. Hwang, W.B. Ko, Curr. Appl. Phys. 9 (2) (2009) e152. https://doi.org/10.1016/j.cap.2008.12.048
  24. W.P. Halperin, Rev. Mod. Phys. 58 (3) (1986) 533. https://doi.org/10.1103/RevModPhys.58.533
  25. S.H. Choi, J. Ind. Eng. Chem. 10 (6) (2004) 1015
  26. D. Lee, S.I. Cho, G.J. Kim, H. Kim, I.M. Lee, J. Ind. Eng. Chem. 13 (7) (2007) 1067.
  27. S.D. Oh, K.R. Yoon, S.H. Choi, A. Gopalan, K.P. Lee, S.H. Sohn, H.D. Kang, I.S. Choi, J. Non-Cryst. Solids 352 (4) (2006) 355. https://doi.org/10.1016/j.jnoncrysol.2005.12.006
  28. S.D. Oh, B.K. So, S.H. Choi, A. Gopalan, K.P. Lee, K.R. Yoon, I.S. Choi, Mater. Lett. 59 (10) (2005) 1121. https://doi.org/10.1016/j.matlet.2004.10.080
  29. K.M.K. Yu, P. Meric, S.C. Tsang, Catal. Today 114 (4) (2006) 428. https://doi.org/10.1016/j.cattod.2006.02.076
  30. J.S. Albero, G. Rupprechter, H.J. Freund, J. Catal. 240 (1) (2006) 58. https://doi.org/10.1016/j.jcat.2006.02.024
  31. P. Barbaro, C. Bianchini, V.D. Santo, A. Meli, S. Moneti, R. Psaro, A. Scaffidi, L. Sordelli, F. Vizza, J. Am. Chem. Soc. 128 (21) (2006) 7065. https://doi.org/10.1021/ja060235w
  32. A. Tang, Y. Xiao, J. Ouyangb, S. Nie, J. Alloys Compd. 457 (1-2) (2008) 447. https://doi.org/10.1016/j.jallcom.2007.02.148
  33. J. Chen, R.J. Dai, B. Tong, S.Y. Xiao, E. Meng, Chin. Chem. Lett. 18 (1) (2007) 10. https://doi.org/10.1016/j.cclet.2006.11.009
  34. W.Y. Ahn, S.A. Sheeley, T. Rajh, D.M. Cropek, Appl. Catal. B 17 (1-2) (2007) 103.

Cited by

  1. Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-aminophenol vol.350, pp.1, 2011, https://doi.org/10.1016/j.molcata.2011.08.009
  2. Cuprous Oxide/Copper Particles Prepared by a Facile Wet-Chemical Reduction Approach as Anode Material for Li Ion Batteries vol.509, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/amr.509.28
  3. Kinetics and Catalytic Activity of Carbon-Nickel Nanocomposites in the Reduction of 4-Nitrophenol vol.50, pp.3, 2015, https://doi.org/10.7473/ec.2015.50.3.217
  4. A two-oxide nanodiode system made of double-layered p-type Ag2O@n-type TiO2 for rapid reduction of 4-nitrophenol vol.18, pp.6, 2010, https://doi.org/10.1039/c5cp07320k
  5. A ternary Cu2O–Cu–CuO nanocomposite: a catalyst with intriguing activity vol.45, pp.7, 2010, https://doi.org/10.1039/c5dt03859f
  6. A Facile Synthetic Approach for Cu(OH)2-Cu2O Heterostructure: A Stable Catalyst for Pollutant Degradation vol.80, pp.2, 2010, https://doi.org/10.1080/0371750x.2021.1904289