DOI QR코드

DOI QR Code

Effective parameters for DME steam reforming catalysts for the formation of $H_2$ and CO

  • Park, Sung-Yong (Graduate School of Mechanical Engineering, Chonnam National University) ;
  • Kim, Hwa-Nam (School of Mechanical Systems Engineering, Chonnam National University) ;
  • Choi, Byung-Chul (School of Mechanical Systems Engineering, Chonnam National University)
  • Received : 2010.01.21
  • Accepted : 2010.04.14
  • Published : 2010.09.25

Abstract

Recently, DME has received attention as a clean fuel and is now considered an alternative fuel for diesel engines. DME diesels need de-NOx catalysts such as LNT (Lean NOx Trap) and SCR (Selective Catalytic Reduction) systems. DME is an attractive source of hydrogen because it can be stored easily and is a good transportation fuel. Hydrogen and CO enriched gas as a reductant was used with the LNT catalyst in order to reduce NOx emissions. The steam reforming catalyst of DME was used to formation of hydrogen. It has been reported that Cu-based catalysts have high selectivity and activity in the steam reforming of DME. This research used 600 cPsi cordierite as a catalyst, which was coated with copper. The catalysts were made via a sol-gel and impregnation methods. The formation of $H_2$ and CO under the prepared catalysts was tested by a model gas. Experimental parameters were considered; the space velocity (SV) and concentrations of $H_2O$, $O_2$, and $CO_2$ were evaluated. The Cu 30%/${\gamma}-Al_2O_3$ catalyst from the sol-gel method exhibited high and stable activity in the production of hydrogen from the steam reforming of DME. Both DME conversion and the selectivity of hydrogen were affected by SV and the concentrations of $H_2O$, $O_2$, and $CO_2$.

Keywords

Acknowledgement

Grant : Basic Science Research Program

Supported by : National Research Foundation of Korea (NRF)

References

  1. H.W. Wang, L.B. Zhou, D.M. Jiang, Z.H. Huang, Proc. Inst. Mech. Eng. D 214 (2000) 101.
  2. T.A. Semelsberger, R.L. Borup, H.L. Greene, J. Power Source 156 (2006) 497. https://doi.org/10.1016/j.jpowsour.2005.05.082
  3. S.I. Kwon, J.C. Kim, Y.H. Park, C.S. Lim, in: Proceedings of the 2006 Spring KSAE Conference, 2006, p. 408.
  4. A. Shoji, S. Kamamoshita, T. Watanabe, T. Tanaka, SAE 2004-01-0579 (2004).
  5. Y.O. Park, K.W. Lee, Y.W. Phee, J. Ind. Eng. Chem. 15 (2009) 36. https://doi.org/10.1016/j.jiec.2008.07.009
  6. P. Eastwood, Critical Topics in Exhaust Gas Aftertreatment, Research Studies Press Ltd., 2000.
  7. M. Koebel, M. Elsener, O. Krocher, C. Schar, R. Rothlisberger, F. Jaussi, M. Mangold, Top. Catal. 30 (2004) 43.
  8. J.M. Storey, Coordinating Research Council Inc., CRC Project No. AVF-10b-2.
  9. I. Nova, L. Lietti, P. Forzatti, Catal. Today 136 (2008) 128. https://doi.org/10.1016/j.cattod.2008.01.006
  10. Y. Tanaka, R. Kikuchi, T. Takeguchi, K. Eguchi, Appl. Catal. B 57 (2005) 211. https://doi.org/10.1016/j.apcatb.2004.11.007
  11. S. Wang, T. Ishihara, Y. Takita, Appl. Catal. A 228 (2002) 167.
  12. R.A.J. Dams, P.R. Hayter, S.C. Moore, SAE 2000-01-0010 (2000).
  13. B. Lindstrom, L.J. Pettersson, J. Power Source 106 (2002) 264. https://doi.org/10.1016/S0378-7753(01)01016-3
  14. K. Faungnawakij, Y. Tanaka, N. Shimoda, T. Fukunaga, R. Kikuchi, K. Eguchi, Appl. Catal. B 74 (2007) 144.
  15. T. Fukunaga, N. Ryumon, S. Shimazu, Appl. Catal. A: Gen. 348 (2008) 193. https://doi.org/10.1016/j.apcata.2008.06.031
  16. K. Faungnawakij, Y. Tanaka, N. Shimoda, T. Fukunaga, S. Kawashima, Appl. Catal. A 304 (2006) 40.
  17. T. Kawabata, H. Matsuoka, T. Shishido, D. Li, Y. Tian, Appl. Catal. A 308 (2006) 82.
  18. S. Kajitani, K.B. Ogata, T. Hashimoto, 17th International Symposium on Alcohol Fuels, 2008, p. 72.
  19. H. Teng, C. James, M. Candless, SAE 2006-01-0053 (2006).
  20. Takeishi et al., US Patent 0192653 Al (2004).
  21. J.W. Bae, S.H. Kang, Y.J. Lee, K.W. Jun, J. Ind. Eng. Chem. 15 (2009) 566. https://doi.org/10.1016/j.jiec.2009.01.014
  22. S.H. Lee, J.W. Choi, J.W. Kim, K.S. Sim, J. Korean Hydrogen Energy Soc. 12 (2001) 293.
  23. S. Cavallaro, Energy Fuels 14 (2000) 195.
  24. C.H. Park, K.Y. Kim, J.W. Jun, S.Y. Cho, Y.K. Lee, J. Korean Ind. Eng. Chem. 20 (2009) 186.
  25. M. Nilsson, K. Jansson, P. Jozsa, L.J. Pettersson, Appl. Catal. B 86 (2009) 18.
  26. J. Kaspar, P. Fornasiero, N. Hickey, Catal. Today 77 (2003) 419. https://doi.org/10.1016/S0920-5861(02)00384-X

Cited by

  1. A combined system of dimethyl ether (DME) steam reforming and lean NOx trap catalysts to improve NOx reduction in DME engines vol.36, pp.11, 2010, https://doi.org/10.1016/j.ijhydene.2011.02.124
  2. Dimethyl ether steam reforming under daily start-up and shut-down (DSS)-like operation over CuFe2O4 spinel and alumina composite catalysts vol.409, pp.None, 2010, https://doi.org/10.1016/j.apcata.2011.09.031
  3. Volume Optimization of a Combined System of LNT and SCR Catalysts Considering Economic Feasibility and De-NOx Performance vol.17, pp.1, 2010, https://doi.org/10.9726/kspse.2013.17.1.019
  4. Study of the Optimal Calcination Temperature of an Al/Co/Ni Mixed Metal Oxide as a DeNOx Catalyst for LNT vol.21, pp.3, 2015, https://doi.org/10.7464/ksct.2015.21.3.184
  5. DME conversion using high flux tubular membrane reactors vol.51, pp.12, 2010, https://doi.org/10.1080/01496395.2016.1198378
  6. Process Simulation of CO2 Utilization from Acid Gas Removal Unit for Dimethyl Ether Production vol.10, pp.5, 2017, https://doi.org/10.3923/jest.2017.220.229
  7. Modification of Cu/SiO2 Catalysts by La2 O3 to Quantitatively Tune Cu+ -Cu0 Dual Sites with Improved Catalytic Activities and Stabilities for Dim vol.10, pp.17, 2010, https://doi.org/10.1002/cctc.201800421
  8. Zinc oxide modified HZSM-5 as an efficient acidic catalyst for hydrogen production by steam reforming of dimethyl ether vol.128, pp.1, 2010, https://doi.org/10.1007/s11144-019-01642-5
  9. Process Solutions for Recovery of Dimethyl Ether Produced Through One-Step Synthesis and Their Assessment vol.61, pp.2, 2010, https://doi.org/10.1134/s0965544121020109
  10. The role of Lewis acidic vanadium centers in DME steam reforming over V-Ni catalysts vol.423, pp.None, 2010, https://doi.org/10.1016/j.cej.2021.129996