DOI QR코드

DOI QR Code

Application of Psf-PPSS-TPA composite membrane in the all-vanadium redox flow battery

  • Kim, Joeng-Geun (Div. Energy Efficiency & Materials Convergence Research, Korea Institute of Energy Research) ;
  • Lee, Sang-Ho (Div. Energy Efficiency & Materials Convergence Research, Korea Institute of Energy Research) ;
  • Choi, Sang-Il (Div. Energy Efficiency & Materials Convergence Research, Korea Institute of Energy Research) ;
  • Jin, Chang-Soo (Div. Energy Efficiency & Materials Convergence Research, Korea Institute of Energy Research) ;
  • Kim, Jae-Chul (Convergence Technology Research Institute, Hoseo University) ;
  • Ryu, Cheol-Hwi (Convergence Technology Research Institute, Hoseo University) ;
  • Hwang, Gab-Jin (Convergence Technology Research Institute, Hoseo University)
  • Received : 2009.12.22
  • Accepted : 2010.04.06
  • Published : 2010.09.25

Abstract

The Psf-PPSS-TPA composite cation exchange membrane consist of Psf(polysulfone)-PPSS (poly-phenylenesulfidesulfone) block copolymer with TPA (tungstophosphoric acid) is prepared to apply for a separator in the all-vanadium redox flow battery. The membrane properties such as membrane resistance and ion exchange capacity, and thermal stability are investigated. The prepared Psf-PPSS-TPA composite cation exchange membrane showed higher thermal stability than Nafion117. The lowest membrane resistance of the prepared Psf-PPSS-TPA composite cation exchange membrane measured in 1 M ($mol/dm^3$) $H_2SO_4$ aqueous solution was $0.94{\Omega}cm^2$ at 0.5 g of TPA solution. The performance properties of the all-vanadium redox flow battery (V-RFB) using the prepared cation exchange membrane are measured. The electromotive force, open circuit voltage at state of charge (SOC) of 100%, was 1.4 V. This value meets a theoretical electromotive force value of the V-RFB. The measuring cell resistance in charge and discharge at SOC 100% were 0.26 ${\Omega}$ and 0.31 ${\Omega}$, respectively. The results of the present study suggest that the prepared Psf-PPSS-TPA composite cation exchange membrane is well suited for use in V-RFB as a separator.

Keywords

References

  1. M. Skyllas-Kazacos, F. Grossmith, J. Electrochem. Soc. 134 (12) (1987) 2950. https://doi.org/10.1149/1.2100321
  2. G.-J. Hwang, H. Ohya, J. Membr. Sci. 120 (1996) 55. https://doi.org/10.1016/0376-7388(96)00135-4
  3. G.-J. Hwang, H. Ohya, J. Membr. Sci. 132 (1997) 55. https://doi.org/10.1016/S0376-7388(97)00040-9
  4. X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu, L. Chen, J. Power Sources 189 (2009) 1240. https://doi.org/10.1016/j.jpowsour.2008.12.040
  5. Q. Luo, H. Zhang, J. Chen, D. You, C. Sun, Y. Zhang, J. Membr. Sci. 325 (2) (2008) 553. https://doi.org/10.1016/j.memsci.2008.08.025
  6. Q. Luo, H. Zhang, J. Chen, P. Qian, Y. Zhai, J. Membr. Sci. 311 (2008) 98. https://doi.org/10.1016/j.memsci.2007.11.055
  7. R. Patel, S.J. Im, Y.T. Ko, J.H. Kim, B.R. Min, J. Ind. Eng. Chem. 15 (3) (2009) 299. https://doi.org/10.1016/j.jiec.2008.12.011
  8. J.H. Kim, H.J. Kim, T.H. Lim, H.I. Lee, J. Ind. Eng. Chem. 13 (5) (2007) 850.
  9. I.-Y. Jang, O.-H. Kweon, K.-E. Kim, G.-J. Hwang, S.-B. Moon, A.-S. Kang, J. Power Sources 181 (1) (2008) 127. https://doi.org/10.1016/j.jpowsour.2008.03.022
  10. I.-Y. Jang, O.-H. Kweon, K.-E. Kim, G.-J. Hwang, S.-B. Moon, A.-S. Kang, J. Membr. Sci. 322 (1) (2008) 154. https://doi.org/10.1016/j.memsci.2008.05.028
  11. S.M.J. Zaidi, S.D. Mikhailenko, G.P. Robertson, M.D. Guiver, J. Membr. Sci. 173 (2000) 17. https://doi.org/10.1016/S0376-7388(00)00345-8
  12. H.B. Park, H.S. Shin, Y.M. Lee, J.W. Rhim, J. Membr. Sci. 247 (2005) 103. https://doi.org/10.1016/j.memsci.2004.09.023
  13. I. Terada, H. Horie, Y. Sugaya, H. Miyake, Koubunshi Kakou 40 (8) (1991) 38, in Japanese.
  14. G.-J. Hwang, H. Ohya, J. Membr. Sci. 140 (1998) 195. https://doi.org/10.1016/S0376-7388(97)00283-4
  15. G.-J. Hwang, H. Ohya, J. Membr. Sci. 149 (1998) 163. https://doi.org/10.1016/S0376-7388(98)00194-X
  16. G.-J. Hwang, H. Ohya, T. Nagai, J. Membr. Sci. 156 (1999) 61. https://doi.org/10.1016/S0376-7388(98)00331-7
  17. S.-H. Lee, J.-G. Kim, S.-I. Choi, G.-J. Hwang, C.-S. Jin, Membr. J. 19 (2) (2009) 129 (in Korean).
  18. Y.S. Kim, F. Wang, M. Hickner, T.A. Zawodzinski, J.E. Mcgrath, J. Membr. Sci. 212 (2003) 263. https://doi.org/10.1016/S0376-7388(02)00507-0

Cited by

  1. Recent Progress in Redox Flow Battery Research and Development vol.23, pp.8, 2010, https://doi.org/10.1002/adfm.201200694
  2. Ion exchange membranes for vanadium redox flow batteries vol.86, pp.5, 2014, https://doi.org/10.1515/pac-2014-0101
  3. Ion exchange membranes for vanadium redox flow batteries vol.86, pp.5, 2014, https://doi.org/10.1515/pac-2014-0101
  4. 바나듐 레독스-흐름 전지에서 집전체의 전기화학적 특성 vol.52, pp.2, 2010, https://doi.org/10.9713/kcer.2014.52.2.182
  5. VRFB를 위한 BOP 구성 및 BMS 기능구현에 관한 연구 vol.28, pp.12, 2010, https://doi.org/10.5207/jieie.2014.28.12.074
  6. Die Chemie der Redox‐Flow‐Batterien vol.127, pp.34, 2010, https://doi.org/10.1002/ange.201410823
  7. The Chemistry of Redox‐Flow Batteries vol.54, pp.34, 2010, https://doi.org/10.1002/anie.201410823
  8. Redox‐Flow‐Batterien im Unterricht vol.52, pp.4, 2010, https://doi.org/10.1002/ciuz.201800812
  9. 폴리에테르설폰-폴리페닐렌설파이드설폰 블렌딩 고분자를 이용한 음이온교환막의 제조 vol.29, pp.3, 2019, https://doi.org/10.14579/membrane_journal.2019.29.3.155
  10. 메타바나듐산암모늄과 양이온교환막을 활용한 바나듐 레독스 흐름전지에 관한 연구 vol.31, pp.4, 2010, https://doi.org/10.14579/membrane_journal.2021.31.4.262