DOI QR코드

DOI QR Code

Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal

  • ShamsiJazeyi, Hadi (Center of Excellence for Petro-Chemistry, Department of Chemical Engineering, AmirKabir University of Technology) ;
  • Kaghazchi, Tahereh (Center of Excellence for Petro-Chemistry, Department of Chemical Engineering, AmirKabir University of Technology)
  • Received : 2009.09.30
  • Accepted : 2010.01.21
  • Published : 2010.09.25

Abstract

In the present work, Hg(II) adsorption of a commercial activated carbon with and without nitric acid treatment was compared in a batch system. Iodine adsorption test and nitrogen adsorption and desorption experiments were carried out to investigate the changes in porous characteristics during acid treatment. Although the results for iodine adsorption of two samples were approximately similar, the increase in porous characteristics during acid treatment was determined bymicropore volume and total pore volume of treated and untreated samples. To evaluate the effects of acid treatment on the surface functional groups, FTIR analysis for both types of activated carbons was performed, and showed oxidized surface for treated sample. Furthermore, composition of the gaseous by-product resulted from this treatment has been qualitatively analyzed using a FTIR device. Consequently, NO, $NO_2$, $N_2O_4$, $N_2O$, CO, and $CO_2$ were detected. Kinetic and equilibriumadsorption studies were performed considering effective parameters, including contact time, initial pH, and initial concentration. It can be seen that nitric acid treatment of activated carbon has enhanced Hg(II) adsorption capacity. Moreover, kinetic studies showed faster adsorption rate for treated activated carbon through changes in external surface rather than internal.

Keywords

References

  1. G. Muthuraman, T.T. Teng, J. Ind. Eng. Chem. 841 (2009) 15. https://doi.org/10.1016/j.jiec.2009.09.010
  2. J.S. Yang, K. Baek, T.S. Kwon, J.W. Yang, J. Ind. Eng. Chem. 777 (2009) 15. https://doi.org/10.1016/j.jiec.2009.09.027
  3. J.Y. Lee, J.R. Kumar, J.S. Kim, D.J. Kim, H.S. Yoon, J. Ind. Eng. Chem. 359 (2009) 15. https://doi.org/10.1016/j.jiec.2008.12.006
  4. C.H. Shin, J.S. Bae, J. Ind. Eng. Chem. 179 (2009) 15. https://doi.org/10.1016/j.jiec.2008.09.015
  5. W. Lochananon, D. Chatsiriwech, J. Ind. Eng. Chem. 84 (2009) 14. https://doi.org/10.1016/j.jiec.2007.09.001
  6. R. Baeyens, R. Ebinghous, O. Vasilev, Global and Regional Mercury Cycles: Sources, Fluxes, and Mass Balances, Kluwer Academic Publishers, 1996.
  7. M.M.Rao, D.Reddy, P.Venkateswarlu, K. Seshaiah, J. Environ.Manage. 634 (2009)90.
  8. P.C. Bidstrup, Toxicity of Mercury and its Compounds, Elsevier, Amsterdam, 1964.
  9. J.V. Nabais, P.J.M. Carrott, M. Carrott, M. Belchior, D. Boavida, T. Diall, I. Gulyurtlu, Appl. Surf. Sci. 6046 (2006) 252.
  10. M.F. Yardim, T. Budinova, E. Ekinci, N. Petrov, M. Razvigorova, V. Minkova, Chemosphere 835 (2003) 52.
  11. C. Jeon, K.H. Park, Water Res. 39 (2005) 3938. https://doi.org/10.1016/j.watres.2005.07.020
  12. F. Di Natale, A. Lancia, A. Molino, M. Di Natale, D. Karatza, D. Musmarra, J. Hazard. Mater. 132 (2006) 220. https://doi.org/10.1016/j.jhazmat.2005.09.046
  13. M. Kobya, E. Demirbas, E. Senturk, M. Ince, Bioresour. Technol. 96 (2005) 1518. https://doi.org/10.1016/j.biortech.2004.12.005
  14. J.Y. Lee, T.S. Kwon, K. Baek, J.W. Yang, J. Ind. Eng. Chem. 354 (2009) 15. https://doi.org/10.1016/j.jiec.2008.12.007
  15. M. Soleimani, T. Kaghazchi, J. Ind. Eng. Chem. 28 (2008) 14. https://doi.org/10.1016/j.jiec.2007.06.003
  16. A. Shafaei, F.Z. Ashtiani, T. Kaghazchi, Chem. Eng. J. 311 (2007) 133.
  17. A. Kongsuwan, P. Patnukao, P. Pavasant, J. Ind. Eng. Chem. 465 (2009) 15. https://doi.org/10.1016/j.jiec.2009.02.002
  18. J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Carbon 43 (2005) 197. https://doi.org/10.1016/j.carbon.2004.08.002
  19. C.H. Shin, J.S. Bae, J. Ind. Eng. Chem. 15 (2009) 179. https://doi.org/10.1016/j.jiec.2008.09.015
  20. K.C. Kang, S.S. Kim, J.W. Choi, S.H. Kwon, J. Ind. Eng. Chem. 131 (2008) 14. https://doi.org/10.1016/j.jiec.2007.08.007
  21. C.A. Toles, W.E. Marshall, M.M. Johns, Carbon 1207 (1999) 37.
  22. R. Leyvaramos, L. Fuentesrubio, R.M. Guerrerocoronado, J. Mendozabarron, J. Chem. Technol. Biotechnol. 64 (1995) 62.
  23. A.F. Tajar, T. Kaghazchi, M. Soleimani, J. Hazard. Mater. 1159 (2009) 165.
  24. W.C. Oh, J. Ind. Eng. Chem. 137 (2005) 11. https://doi.org/10.2298/CICEQ0503137G
  25. B.K. Pradhan, N.K. Sandle, Carbon 1323 (1999) 37.
  26. ASTM: D 4607-94, Annual Book of ASTM Standards, Section 15, Vol. 15.01, ASTM International, American Society for Testing Materials (1999).
  27. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 309 (1938) 60.
  28. K.S.W. Sing, in: D.H. Everett, R.H. Ottewill (Eds.), Proceeding of International Symposium, Butterworths, London, 1970.
  29. ASTM: D 2866-94, Annual Book of ASTM Standards, Section 15, Vol. 15.01, ASTM International, American Society for Testing Materials (2000).
  30. S. Lagergren, Kungliga Svenska Vetenskapsakademiens, Handlingar, 1-3924, 4 (1898).
  31. Y.S. Ho, J. Ind. Eng. Chem. 478 (2005) 11.
  32. G.Y. Chu, T.Y. Kim, S.Y. Cho, Y. Kang, S.D. Kim, S.J. Kim, J. Ind. Eng. Chem. 551 (2004) 10.
  33. X.Y. Yang, B. Al-Duri, J. Colloid Interface Sci. 25 (2005) 287.
  34. C.F. Chang, C.Y. Chang, K.H. Chen, W.T. Tsai, J.L. Shie, Y.H. Chen, J. Colloid Interface Sci. 29 (2004) 277.
  35. Y. Liu, Colloid Surf. A. 275 (2008) 320.
  36. W.J. Weber, J.C. Morris, J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 31 (1963) 89.
  37. J.W. Choi, N.C. Choi, S.J. Lee, D.J. Kim, J. Colloid Interface Sci. 367 (2007) 314.
  38. A.N.A. El-Hendawy, Carbon 713 (2003) 41.
  39. J.W. Shim, S.J. Park, S.K. Ryu, Carbon 1635 (2001) 39.
  40. A. Macias-Garcia, M.A. Diaz-Diez, E.M. Cuerda-Correa, M. Olivares-Marin, J. Ganan-Gomez, Appl. Surf. Sci. 5972 (2006) 252.
  41. J. Jaramillo, V. Gomez-Serrano, P.M. Alvarez, J. Hazard. Mater. 670 (2009) 161.
  42. C. Rumi, W. Takanori, I. Katsutoshi, N.L. Hom, T. Toshio, Y. Mitsunori, J. Hazard. Mater. 319 (2009) 167.
  43. M.S. Akhter, A.R. Chughtai, D.M. Smith, J. Phys. Chem. - US 5334 (1984) 88.
  44. P.J.M. Carrott, M. Carrott, J.M.V. Nabais, Carbon 11 (1998) 36.
  45. D.K. Sahoo, R.N. Kar, R.P. Das, Bioresour. Technol. 177 (1992) 41.
  46. C. Green-Ruiz, Bioresour. Technol. 1907 (2006) 97.
  47. T.K. Naiya, A.K. Bhattacharya, S.K. Das, J. Hazard. Mater. 252 (2009) 170.
  48. K.K. Singh, R. Rastogi, S.H. Hasan, J. Colloid Interface Sci. 61 (2005) 290.
  49. Y.S. Ho, G. McKay, Can. J. Chem. Eng. 822 (1998) 76.
  50. M.H. Kalavathy, T. Karthikeyan, S. Rajgopal, L.R. Miranda, J. Colloid Interface Sci. 354 (2005) 292.
  51. G.L. Miessler, D.A. Tarr, Inorganic Chemistry, 3rd ed., Prentice Hall, New Jersey, 1999p.276,.
  52. J. Zawadzki, M. Wisniewski, K. Skowronska, Carbon 235 (2003) 41.
  53. M. Mochida, B.J. Finlayson-Pitts, J. Phys. Chem. A 9705 (2000) 104.

Cited by

  1. A Study of the Optimum Pore Structure for Mercury Vapor Adsorption vol.32, pp.5, 2010, https://doi.org/10.5012/bkcs.2011.32.5.1507
  2. Elemental Mercury Adsorption Behaviors of Chemically Modified Activated Carbons vol.32, pp.4, 2010, https://doi.org/10.5012/bkcs.2011.32.4.1321
  3. High-sensitivity gas sensor using electrically conductive and porosity-developed carbon nanofiber vol.384, pp.1, 2010, https://doi.org/10.1016/j.colsurfa.2011.04.001
  4. Effects of acid treatment on activated carbon used as a support for Rb and K catalyst for C2F5I synthesis and its mechanism vol.132, pp.8, 2010, https://doi.org/10.1016/j.jfluchem.2011.05.032
  5. A review of elemental mercury removal processing vol.12, pp.3, 2011, https://doi.org/10.5714/cl.2011.12.3.121
  6. Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors vol.132, pp.12, 2010, https://doi.org/10.1016/j.jfluchem.2011.06.046
  7. Study effect of different parameters on the sulphate sorption onto nano alumina vol.18, pp.1, 2012, https://doi.org/10.1016/j.jiec.2011.11.012
  8. Elimination of mercury by adsorption onto activated carbon prepared from the biomass material vol.18, pp.1, 2012, https://doi.org/10.1016/j.jiec.2011.11.040
  9. Effect of pre-oxidation for introduction of nitrogen containing functional groups into the structure of activated carbons and its influence on Cu (II) adsorption vol.43, pp.5, 2010, https://doi.org/10.1016/j.jtice.2012.02.006
  10. The Properties of Activated Carbon Fiber Derived from Direct Activation from Oil Palm Empty Fruit Bunch Fiber vol.686, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/amr.686.109
  11. Sulfur-impregnated porous carbon for removal of mercuric chloride: optimization using RSM vol.15, pp.6, 2013, https://doi.org/10.1007/s10098-012-0564-4
  12. Collection of atmospheric gaseous mercury for stable isotope analysis using iodine- and chlorine-impregnated activated carbon traps vol.29, pp.5, 2010, https://doi.org/10.1039/c3ja50356a
  13. Acid-activated biochar increased sulfamethazine retention in soils vol.22, pp.3, 2010, https://doi.org/10.1007/s11356-014-3434-2
  14. Novel carbon sphere@Bi2MoO6 core–shell structure for efficient visible light photocatalysis vol.5, pp.21, 2010, https://doi.org/10.1039/c4ra16777e
  15. Elemental mercury removal from syngas at high-temperature using activated char pyrolyzed from biomass and lignite vol.33, pp.11, 2016, https://doi.org/10.1007/s11814-016-0182-7
  16. Removal of mercury (II) from aqueous solution with three commercial raw activated carbons vol.43, pp.4, 2010, https://doi.org/10.1007/s11164-016-2761-y
  17. Cobalt Oxide on N-Doped Carbon for 1-Butene Oligomerization to Produce Linear Octenes vol.7, pp.11, 2010, https://doi.org/10.1021/acscatal.7b01482
  18. Mercury Capture from Petroleum Using Deep Eutectic Solvents vol.57, pp.28, 2018, https://doi.org/10.1021/acs.iecr.8b00967
  19. Functionalized Charcoal as a Buffering Matrix of Copper and Zinc Availability vol.42, pp.None, 2018, https://doi.org/10.1590/18069657rbcs20170366
  20. Role of Electron Acceptor-donor on Elemental Mercury Removal Using Nano-silver-plated Activated Carbons Complexes vol.31, pp.2, 2010, https://doi.org/10.7234/composres.2018.31.2.076
  21. Adsorption Mechanisms of Manganese (II) Ions onto Acid-treated Activated Carbon vol.22, pp.10, 2010, https://doi.org/10.1007/s12205-018-1334-6
  22. Effect of Phosphorus Ligand on Cu-Based Catalysts for Acetylene Hydrochlorination vol.7, pp.6, 2010, https://doi.org/10.1021/acssuschemeng.8b06379
  23. Probing the Surface Reactivity of Pyrogenic Carbonaceous Material (PCM) through Synthesis of PCM-Like Conjugated Microporous Polymers vol.53, pp.13, 2019, https://doi.org/10.1021/acs.est.9b01772
  24. Activated carbon fibers for toxic gas removal based on electrical investigation: Mechanistic study of p-type/n-type junction structures vol.9, pp.1, 2010, https://doi.org/10.1038/s41598-019-50707-x
  25. Progress in the Research of the Toxicity Effect Mechanisms of Heavy Metals on Freshwater Organisms and Their Water Quality Criteria in China vol.2020, pp.None, 2010, https://doi.org/10.1155/2020/9010348
  26. BET, FTIR, and RAMAN characterizations of activated carbon from waste oil fly ash vol.44, pp.2, 2010, https://doi.org/10.3906/kim-1909-20
  27. Facile preparation of multiphosphonic acid functionalised multi‐walled carbon nanotubes for enhanced adsorption properties for heavy metal ions from wastewaters vol.15, pp.10, 2010, https://doi.org/10.1049/mnl.2019.0678
  28. Temperature Effect on Pretreatment of the Activated Carbon Support (Pt/AC and Pd/AC) for Glycerin into Lactic Acid vol.59, pp.33, 2010, https://doi.org/10.1021/acs.iecr.0c01588
  29. Influence of sorption parameters on cesium-137 removal using modified activated carbon obtained from corchorus olitorius stalks vol.108, pp.10, 2010, https://doi.org/10.1515/ract-2020-0012
  30. Electrocatalytic Oxygen Reduction to Hydrogen Peroxide: From Homogeneous to Heterogeneous Electrocatalysis vol.11, pp.15, 2021, https://doi.org/10.1002/aenm.202003323
  31. Surface functionalization methodologies on activated carbons and their benzene adsorption vol.31, pp.3, 2021, https://doi.org/10.1007/s42823-020-00170-w
  32. Enhancing Electrocatalytic Production of H 2 O 2 by Modulating Coordination Environment of Cobalt Center vol.42, pp.8, 2010, https://doi.org/10.1002/bkcs.12348
  33. Preparation of porous carbon based on partially degraded raw biomass by Trichoderma viride to optimize its toluene adsorption performance vol.28, pp.34, 2010, https://doi.org/10.1007/s11356-021-12796-y
  34. The Synergistic Character of Highly N‐Doped Coconut-Shell Activated Carbon for Efficient CO 2 Capture vol.6, pp.34, 2010, https://doi.org/10.1002/slct.202102522
  35. Sulfur-containing nitrogen-rich robust hierarchically porous organic polymer for adsorptive removal of mercury: experimental and theoretical insights vol.8, pp.9, 2010, https://doi.org/10.1039/d1en00448d
  36. Selective adsorption of phosphate by carboxyl-modified activated carbon electrodes for capacitive deionization vol.84, pp.7, 2010, https://doi.org/10.2166/wst.2021.358
  37. Activated Carbon Modification towards Efficient Catalyst for High Value-Added Products Synthesis from Alpha-Pinene vol.14, pp.24, 2021, https://doi.org/10.3390/ma14247811
  38. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption vol.6, pp.None, 2010, https://doi.org/10.1016/j.clet.2021.100382