DOI QR코드

DOI QR Code

Influence of pulsed electric field on growths of soil bacteria and pepper plant

  • Seo, Ha-Na (Department of Biological Engineering, Seokyeong University) ;
  • Jeon, Bo-Young (Department of Biological Engineering, Seokyeong University) ;
  • Tran, Hung Thuan (Department of Environmental Engineering and Biotechnology, Myongji University) ;
  • Ahn, Dae-Hee (Department of Environmental Engineering and Biotechnology, Myongji University) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • Received : 2009.06.25
  • Accepted : 2009.09.06
  • Published : 2010.03.01

Abstract

DC 20 volt of electricity was charged to the electrodes placed around hot pepper plants to induce electrical redox reaction. Anode and cathode were periodically exchanged at intervals of 30 seconds to develop a pulsed electric field (PEF), by which the ORP of the soil around the pepper plant roots were fluctuated from 17 to -13 volts. Mean viable cell number of the intrinsic bacteria in five different positions was variable from 77,000 to 396,000 around electrodes and 339,000 to 680,000 around plants in the PEF, and 538,000 to 927,000 around plants in the conventional field. The mean viable cell number of the extrinsic bacteria (R. solanacearum) in five different positions was variable from 15,000 to 47,000 around electrode and 152,000 to 374,000 around plant in the PEF, and 294,000 to 607,000 around plants in the conventional field. Mean 3.93 and 5.67 of hot pepper plants were infected with bacterial wilt every two days by passive and active infection, respectively, in the conventional field. Mean 1.25 and 2.5 of hot pepper plants were infected with bacterial wilt every two days by passive and active infection, respectively, in the PEF. Mean sprouting number of seeds in the PEF and conventional field and was 45.0 and 48.2, respectively. Mean dry weight of hot pepper plants was 3.15 g and 2.51 g in the PEF and conventional field, respectively. The TGGE band pattern in the PEF was not very different in comparison with that in the conventional field (B and D) based on the band number, which corresponds to the bacterial diversity. This study suggests that the PEF would be functioning as an environmental factor to inhibit bacterial growth rather than to be a physical agent to destroy bacterial cells.

Keywords

References

  1. P. Frey, P. Prior, C. Marie, A. Kotoujansky, D. Trigalet-Demery and A. Trigalet, Appl. Environ. Microbiol., 60, 3175 (1994).
  2. A. C. Hayward, Annu. Rev. Phytopathol., 29, 65 (1991). https://doi.org/10.1146/annurev.py.29.090191.000433
  3. E. Yabuuchi, Y. Kosako, I Yano, H. Hotta and Y. Nishiuchi, Microbial Immunol., 39, 897 (1995).
  4. D. L. Coplin and D. Cook, Mol. Plant-Microbe Interact., 3, 271 (1990). https://doi.org/10.1094/MPMI-3-271
  5. A. Hussain and A. Kelman, Phytopathology, 48, 155 (1958).
  6. C. S. Anuratha and S. S. Gnanamanickam, Plant Soil, 124, 109 (1990). https://doi.org/10.1007/BF00010938
  7. M. Aoki, K. Uehara, K. Koseki, K. Tsuji, M. Iijima, K. Ono and T. Samejima, Agric. Biol. Chem., 55, 715 (1991). https://doi.org/10.1271/bbb1961.55.715
  8. W. Y. Chen and E. Echandi, Am. J. Potato Res., 57, 319 (1984).
  9. L. Ciampi-Panno, C. Fernandez, P. Bustamante, N. Andrade, S. Ojeda and A. Contreras, Am. J. Potato Res., 66, 315 (1989). https://doi.org/10.1007/BF02854019
  10. S.A. Weller, J.G. Elphinstone, N. C. Smith, N. Boonhan and D. E. Stead, Appl. Environ. Microbiol., 66, 2853 (2000). https://doi.org/10.1128/AEM.66.7.2853-2858.2000
  11. L. Ciampi, L. Sequeira and E. R. French, Am. J. Potato Res., 57, 377 (1980). https://doi.org/10.1007/BF02854329
  12. R.A. Griep, C. van Twisk, J.R. C.M. van Beckhoven, J.M. van der Wolf and A. Schots, Phytopathology, 88, 795 (1998). https://doi.org/10.1094/PHYTO.1998.88.8.795
  13. A. Robinson-Smith, P. Jones, J.G. Elphinstone and S. M.D. Forde, Food Agric. Immunol., 7, 67 (1995). https://doi.org/10.1080/09540109509354866
  14. S. E. Seal, L.A. Jackson, J. P.W. Young and M. J. Daniels, J. Gen. Microbiol., 139, 1587 (1993). https://doi.org/10.1099/00221287-139-7-1587
  15. S. E. Seal and J.G. Elphinstone, in Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum, Hayward, A. C. and Hartman, G. L. Eds., CAB International, Wallingford, United Kingdom (1994).
  16. J. D. Janse, Syst. Appl. Microbiol., 12, 335 (1991).
  17. D. E. Stead, Int. J. Syst. Bacteriol., 42, 281 (1992). https://doi.org/10.1099/00207713-42-2-281
  18. H. Hara and K. Ono, Ann. Phytophathol. Soc. Jpn., 57, 24 (1991). https://doi.org/10.3186/jjphytopath.57.24
  19. J. Kempe and L. Sequeira, Plant Dis., 67, 499 (1983). https://doi.org/10.1094/PD-67-499
  20. R. J. McLaughlin, L. Sequeira and D. P. Weingartner, Am. J. Potato Res., 67, 93 (1990). https://doi.org/10.1007/BF02990959
  21. H. Tanaka, H. Negishi and H. Maeda, Ann. Phytopathol. Soc. Jpn., 56, 243 (1990). https://doi.org/10.3186/jjphytopath.56.243
  22. B.K. Na, B. I. Sang, D.W. Park and D. H. Park, J. Microbiol. Biotechnol., 15, 1221 (2005).
  23. H. J. Lee, J. S. Park and S. H. Moon, Korean J. Chem. Eng., 19, 880 (2005).
  24. Y. Cong, Z. Woo and Y. Li, Korean J. Chem. Eng., 25, 727 (2008). https://doi.org/10.1007/s11814-008-0119-x
  25. M. Giladi, Y. Porat, A. Blatt, Y. Wasserman, E. D. Kirson, E. Dekel and Y. Palti, Antimicrob. Agents Chemother., 52, 3517 (2008). https://doi.org/10.1128/AAC.00673-08
  26. P. C. Wouters, N. Dutreux, J. P. P. J. Smelt and H. L. M. Lelieveld, Appl. Environ. Microbiol., 65, 5364 (1999).
  27. I. E. Poi, H. C. Mastwijk, P.V. Bartels and E. J. Smid, Appl. Environ. Microbiol., 66, 428 (2000). https://doi.org/10.1128/AEM.66.1.428-430.2000
  28. N. J. Rowan, S. J. MacGregor, J.G. Anderson, D. Cameron and O. Farish, Appl. Environ. Microbiol., 67, 2833 (2001). https://doi.org/10.1128/AEM.67.6.2833-2836.2001
  29. M. Somolinos, D. Garcia, S. Condon, P. Maoas and R. Pagan, Appl. Environ. Microbiol., 73, 3814 (2007). https://doi.org/10.1128/AEM.00517-07
  30. C.A. Eichner, R.W. Erb, K.H. Timmis and I. Wagner-Dobler, Appl. Environ. Microbiol., 65, 102 (1999).
  31. J. Sambrook, E. F. Fritsch and T. Maniatis, Molecular cloning: A laboratory manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1989).
  32. B. J. Alloway, in Heavy Metals in Soil 2nd Ed., Blackie Academic & Professional. London (1995).
  33. B. A. Richardson and J. Overbaugh, J. Virol., 79, 669 (2005). https://doi.org/10.1128/JVI.79.2.669-676.2005
  34. K. Baek, H. H. Lee, H. J. Shin and J.W. Yang, Korean J. Chem. Eng., 17, 245 (2000). https://doi.org/10.1007/BF02707151
  35. K. Baek, H. J. Shin, H.H. Lee, Y. S. Jun and J.W. Yang, Korean J. Chem. Eng., 19, 627 (2002). https://doi.org/10.1007/BF02699308
  36. S. J. MacGregor, O. Farish, R.A. Fluracre, J.G. Anderson and N. J. Rowan, IEEE Trans. Plasma Sci., 28, 144 (2000). https://doi.org/10.1109/27.842887
  37. B. L. Qin, U. R. Pothankarmury, H. Vega, G.V. Barbosa-Canovas and B. G. Swanson, Crit. Rev. Food Sci. Nutr., 26, 603 (1996).
  38. N. J. Rowan, S. J. MacGregor, J.G. Anderson, R.A. Fouracre and O. Farish, Lett. Appl. Microbiol., 64, 2065 (2000).
  39. A.N. Rajnicek, C. D. McCaig and N. A. R. Gow, J. Bacteriol., 176, 702 (1994).
  40. F. J.M. Verhagen and H. J. Laanbroek, Appl. Environ. Microbiol., 57, 3255 (1991).
  41. S. E. Lowe, M.K. Jain and J.G. Zeikus, Microbiol. Review, 57, 451 (1993).
  42. C. Calvaruso, M. P. Turpault and P. Frey-Klett, Appl. Environ. Microbiol., 72, 1258 (2006). https://doi.org/10.1128/AEM.72.2.1258-1266.2006
  43. R. Landeweert, E. Hoffland, R.D. Finlay, T.W. Kuyper and N. van Breemen, Trends Ecol. Evol., 16, 248 (2001). https://doi.org/10.1016/S0169-5347(01)02122-X
  44. M. Toro, R. Azcon and J. Barea, Appl. Environ. Microbiol., 63, 4408 (1997).
  45. H. Wallander, Plant Soil, 218, 249 (2000). https://doi.org/10.1023/A:1014936217105
  46. M. E. Puente, Y. Bashan, C.Y. Li and V.K. Lebsky, Plant Biol., 6, 629 (2004). https://doi.org/10.1055/s-2004-821100
  47. G. L. Hartman and J.G. Elphinstone, in Advances in the control of Pseudomonas solanacearum race 1 in major food crops, Hayward, A. C. and Hartman, G. L. Eds., CAB International, Willingford, UK (1994).
  48. E. R. French, in Strategies for integrated control of bacterial wilt of potatoes, Hayward, A. C. and Hartman, G. L. Eds., CAB International, Willingford, UK (1994).

Cited by

  1. Bioelectrochemical Mn(II) Leaching from Manganese Ore by Lactococcus lactis SK071115 vol.21, pp.2, 2010, https://doi.org/10.4014/jmb.1007.07053
  2. Effects of a low-voltage electric pulse charged to culture soil on plant growth and variations of the bacterial community vol.3, pp.3, 2012, https://doi.org/10.4236/as.2012.33038