DOI QR코드

DOI QR Code

Characteristics of commercial selective catalytic reduction catalyst for the oxidation of gaseous elemental mercury with respect to reaction conditions

  • Hong, Hyun-Jo (Department of Display & Chemical Engineering, Kyungil University) ;
  • Ham, Sung-Won (Department of Display & Chemical Engineering, Kyungil University) ;
  • Kim, Moon-Hyeon (Department of Environmental Engineering, Daegu University) ;
  • Lee, Seung-Min (Korea Electric Power Research Institute (KEPRI)) ;
  • Lee, Jung-Bin (Korea Electric Power Research Institute (KEPRI))
  • Received : 2009.09.21
  • Accepted : 2009.11.08
  • Published : 2010.07.01

Abstract

The performance of $V_2O_5$/$TiO_2$-based commercial SCR catalyst for the oxidation of gaseous elemental mercury ($Hg^0$) with respect to reaction conditions was examined to understand the mechanism of $Hg^0$ oxidation on SCR catalyst. It was observed that a much larger amount of $Hg^0$ adsorbed on the catalyst surface under oxidation condition than under SCR condition. The activity of commercial SCR catalyst for $Hg^0$ oxidation was negligible in the absence of HCl, regardless of reaction conditions. The presence of HCl in the reactant gases greatly increased the activity of SCR catalyst for the oxidation of $Hg^0$ to oxidized mercury ($Hg^{2+}$) such as $HgCl_2$ under oxidation condition. However, the effect of HCl on the oxidation of $Hg^0$ was much less under SCR condition than oxidation condition. The activity for $Hg^0$ oxidation increased with the decrease of $NH_3$/NO ratio under SCR condition. This might be attributed to the strong adsorption of $NH_3$ prohibiting the adsorption of HCl which was vital species promoting the oxidation of $Hg^0$ on the catalyst surface under SCR condition.

Keywords

References

  1. S. E. Lindberg and W. J. Stratton, Environ. Sci. Technol., 32, 49 (1998). https://doi.org/10.1021/es970546u
  2. C.C. Travis and B. P. Blaylock, Toxicol. Environ. Chem., 49, 203 (1995). https://doi.org/10.1080/02772249509358194
  3. U. S. Government Printing Office, Mercury study report to congress, Washington, DC (1997).
  4. U. S. Government Printing Office, A study of hazardous air pollutant from electric utility steam generating units: Final report to congress, Washington, DC (1998).
  5. U. S. Environmental Protection Agency, U. S. EPA clean air mercury rule, Washington, DC (2005).
  6. J. C. S. Chang and S. B. Ghorishi, Environ. Sci. Technol., 37, 5763 (2003). https://doi.org/10.1021/es034352s
  7. P. S. Nolan, K. E. Redinger, G. T. Amrhein and G.A. Kudlac, Fuel Process Technol., 85, 587 (2004). https://doi.org/10.1016/j.fuproc.2003.11.009
  8. R. D. Vidic and D. P. Siler, Carbon, 39, 3 (2001). https://doi.org/10.1016/S0008-6223(00)00081-6
  9. S.V. Krishnan, B. K. Gullett and W. Jorewlczt, Environ. Sci. Technol., 28, 1506 (1994). https://doi.org/10.1021/es00057a020
  10. R.D. Vidic and J. B. McLaughlin, J. Air Waste Manage. Assoc., 46, 241 (1996). https://doi.org/10.1080/10473289.1996.10467458
  11. W. J. O'Dowd, R. A. Hargis, E. J. Granite and H.W. Pennline, Fuel Process Technol., 85, 533 (2004). https://doi.org/10.1016/j.fuproc.2003.11.007
  12. E. Pitoniak, C.Y. Wu, D.W. Mazyck, K.W. Powers and W. Sigmund, Environ. Sci. Technol., 39, 1269 (2005). https://doi.org/10.1021/es049202b
  13. J.W. Portzer, J. R. Albritton, C. C. Allen and R. P. Gupta, Fuel Process Technol., 85, 621 (2004). https://doi.org/10.1016/j.fuproc.2003.11.023
  14. E. J. Granite, H.W. Pennline and R. A. Hargis, Ind. Eng. Chem. Res., 39, 1020 (2000). https://doi.org/10.1021/ie990758v
  15. T. Garey, in Proceedings of the Air and Waste Management Association's 92nd Annual Meeting, June, Pittsburgh PA (1999).
  16. S. Niksa and N. Fujiwara, J. Air Waste Manage. Assoc., 55, 1866 (2005). https://doi.org/10.1080/10473289.2005.10464779
  17. S. Straube, T. Hahn and H. Koeser, Appl. Catal. B: Environ., 79, 286 (2008). https://doi.org/10.1016/j.apcatb.2007.10.031
  18. C. Lee, R. Srivastava, S. Ghorishi, T. Hastings and F. Stevens, J. Air Waste Manage. Assoc., 54, 1560 (2004). https://doi.org/10.1080/10473289.2004.10471009
  19. G. Dunham, R. DeWall and C. Senior, Fuel Process Technol., 82, 197 (2003). https://doi.org/10.1016/S0378-3820(03)00070-5
  20. E. Olsen, S. Miller, R. Sharma, G. Dunham and S. Benson, J. Hazard. Mater., 74, 61 (2000). https://doi.org/10.1016/S0304-3894(99)00199-5
  21. S. Kellie, Y. Cao, Y. Duan, L. Li, P. Chu, A. Mehta, R. Carty, J. Riley and W. Pan, Energy Fuels, 19, 800 (2005). https://doi.org/10.1021/ef049769d
  22. S. Ghorishi, C. Lee, W. Jozewicz and J. Kilgroe, Environ. Eng. Sci., 22, 221 (2005). https://doi.org/10.1089/ees.2005.22.221
  23. Y. Zhao, M. Mann, J. Pavlish, B. Mibeck, G. Dunham and E. Olson, Environ. Sci. Technol., 40, 1603 (2006). https://doi.org/10.1021/es050165d
  24. J. Pavlish, E. Sondreal, M. Mann, E. Olson, K. Galbreath, D. Laudal and S. Benson, Fuel Process Technol., 82, 89 (2003). https://doi.org/10.1016/S0378-3820(03)00059-6
  25. S. Meischen and V. Van Pelt, US Patent, 6,136,281 (2000).
  26. S.W. Ham and I. S. Nam, Catalysis Vol. 16, Ed. J. J. Spivey, The Royal Society of Chemistry, Cambridge, 236 (2002).
  27. S. C. Choo, I. S. Nam, S.W. Ham and J. B. Lee, Korean J. Chem. Eng., 20(2), 273 (2003). https://doi.org/10.1007/BF02697240
  28. S.W. Ham, I. S. Nam and Y.G. Kim, Korean J. Chem. Eng., 17(3), 318 (2000). https://doi.org/10.1007/BF02699047
  29. A. Miyamoto, Y. Yamazaki, T. Hattori, M. Inomata and Y. Murakami, J. Catal., 74, 144 (1982). https://doi.org/10.1016/0021-9517(82)90018-5
  30. S.C. Wu and K. Nobe, Ind. Eng. Chem. Prod. Res. Dev., 16, 136 (1977). https://doi.org/10.1021/i360062a005
  31. A. A. Presto and E. J. Granite, Environ. Sci. Technol., 40, 5601 (2006). https://doi.org/10.1021/es060504i
  32. A. Miyamoto, M. Inomata, Y. Yamazaki and Y. Murakami, J. Catal., 57, 526 (1979). https://doi.org/10.1016/0021-9517(79)90021-6
  33. M. Inomata, A. Miyamoto and Y. Murakami, J. Catal., 62, 140 (1980). https://doi.org/10.1016/0021-9517(80)90429-7

Cited by

  1. $V_2O_5-WO_3/TiO_2$ 계 SCR 촉매의 가스상 원소수은 산화 활성 vol.17, pp.4, 2011, https://doi.org/10.7464/ksct.2011.17.4.370
  2. Quecksilber aus thermischen Kraftwerken: Freisetzung‐ und Umwandlungsmechanismen sowie Möglichkeiten zur Minderung vol.84, pp.7, 2010, https://doi.org/10.1002/cite.201100244
  3. Oxidation Catalysts for Elemental Mercury in Flue Gases-A Review vol.2, pp.4, 2012, https://doi.org/10.3390/catal2010139
  4. 수은 연속측정시스템에서 전이금속에 의한 산화수은의 원소수은으로의 촉매환원 vol.20, pp.3, 2010, https://doi.org/10.7464/ksct.2014.20.3.269
  5. 금속염화물이 담지된 V2O5-WO3/TiO2 계 SCR 촉매에 의한 수은 및 NO 동시 제거 vol.23, pp.2, 2010, https://doi.org/10.7464/ksct.2017.23.2.172
  6. Mechanism of Hg0 oxidation in the presence of HCl over a CuCl2-modified SCR catalyst vol.53, pp.14, 2010, https://doi.org/10.1007/s10853-018-2287-3
  7. Simultaneous NO Removal and Hg0 Oxidation over CuO Doped V2O5-WO3/TiO2 Catalysts in Simulated Coal-Fired Flue Gas vol.32, pp.6, 2010, https://doi.org/10.1021/acs.energyfuels.7b03905
  8. Effect of SCR Atmosphere on the Removal of Hg0 by a V2O5-CeO2/AC Catalyst at Low Temperature vol.53, pp.9, 2010, https://doi.org/10.1021/acs.est.8b07122