DOI QR코드

DOI QR Code

Removal of NO using surface modified activated carbon fiber (ACF) by impregnation and heat-treatment of propellant waste

  • Yoon, Keun-Sig (Department of Chemical Engineering, Chungnam National University) ;
  • Ryu, Seung-Kon (Department of Chemical Engineering, Chungnam National University)
  • Received : 2010.01.12
  • Accepted : 2010.03.10
  • Published : 2010.11.01

Abstract

The surface of activated carbon fiber was modified by impregnation and heat-treatment of propellant waste to introduce nitrogen functional groups such as pyridines, pyridones and pyrrols. The pore structure and specific surface area of those modified ACFs were slightly changed; however, the NO removal capacity of the surface modified ACF by propellant waste increased about twice that of the as-received ACF due to the addition of chemical adsorption by nitrogen functional groups. Propellant waste can be used as an ACF surface modifier for the removal of $NO_x$.

Keywords

References

  1. P.A. Thrower, Chemistry and physics of carbon, vol. 25, Marcel Dekker, New York (1996).
  2. M. Isao, K. Yozo, S. Masuaki, K. Shizuo, H. Tomohiro and S. Yorimasa, Carbon, 38, 227 (2000). https://doi.org/10.1016/S0008-6223(99)00179-7
  3. S. J. Park, J. S. Shin, J.W. Shim and S. K. Ryu, J. Colloid Interface Sci., 275, 342 (2004). https://doi.org/10.1016/j.jcis.2004.01.010
  4. J.H. Byeon, H. S. Yoon, K.Y. Yoon, S.K. Ryu and J.H. Hwang, Surface & Coatings Technol., 202, 3571 (2008). https://doi.org/10.1016/j.surfcoat.2007.12.032
  5. Y. S. Lee, Y. H. Kim, J. S. Hong, J. K. Suh and G. J. Cho, Catal. Today, 120, 420 (2007). https://doi.org/10.1016/j.cattod.2006.09.014
  6. J. Muiz, G. Marbn and A. B. Fuertes, Appl. Catal. B: Environ., 27, 27 (2000). https://doi.org/10.1016/S0926-3373(00)00134-X
  7. N. Shirahama, I. Mochida, Y. Korai, K. H. Choi, T. Enjoji, T. Shimohara and A. Yasutake, Appl. Catal. B: Environ., 52, 1739 (2004).
  8. E. Raymundo-Pinero, D. Cazorla-Amoros and A. Linares-Solano, Carbon, 41, 1925 (2003). https://doi.org/10.1016/S0008-6223(03)00180-5
  9. J. Yu, Y. Wu, S. Wang and X. Ma, Carbohydrate Polymer, 70, 8 (2007). https://doi.org/10.1016/j.carbpol.2007.02.020
  10. M. J. Wang, Y. I. Chang and F. Poncin-Epilla, Surface and Interface Analysis, 37, 348 (2005). https://doi.org/10.1002/sia.2029
  11. P. Folly and P. Mder, CHIMIA International Journal for Chemistry, 58, 374 (2004). https://doi.org/10.2533/000942904777677713
  12. Army Technical Manual TM 9-1300-214 (with Change No. 4), Department of the Army, Headquarters, Washington, D.C. (1990).
  13. T. Lindblom and L. E. Paulsson, 11th Symp. Chem. Probl. Connected Stabil. Explos., Bstard, Sweden (1998).
  14. R. Borcherding, Waste Manage., 17, 135 (1997).
  15. S. Biniak, G. Szymaski, J. Siedlewski and A. Swiatkowski, Carbon, 35, 1799 (1997). https://doi.org/10.1016/S0008-6223(97)00096-1
  16. B.K. Kim, S.K. Ryu, B. J. Kim and S. J. Park, J. Colloid Interface Sci., 302, 695 (2006). https://doi.org/10.1016/j.jcis.2006.07.028
  17. W. Shen, H Wang, Y. Liu, Q. Guo and Y. Zhang, Colloids and Surface A, 308, 20 (2007).
  18. C. Moreno-Castilla, M.V. Lopez-Raman and F. Carrasco-Marin, Carbon, 38, 1995 (2000). https://doi.org/10.1016/S0008-6223(00)00048-8
  19. J.R. Pels, F. Kapteijn, J.A. Moulijn, Q. Zhu and K.M. Thomas, Carbon, 33, 1641 (1995). https://doi.org/10.1016/0008-6223(95)00154-6
  20. K. Li, L. Ling, C. Lu, W. Qiao, Z. Liu, L. Liu and I. Mochida, Carbon, 39, 1803 (2001). https://doi.org/10.1016/S0008-6223(00)00320-1
  21. N. Shirahama, I. Mochida, Y. Korai, K. H. Choi, T. Enjoji, T. Shimohara and A. Yasutake, Appl. Catal. B: Environ., 57, 237 (2005). https://doi.org/10.1016/j.apcatb.2004.04.004

Cited by

  1. Preparation, Surface Functionalization, and Characterization of Carbon Micro Fibers for Adsorption Applications vol.28, pp.10, 2010, https://doi.org/10.1089/ees.2010.0308
  2. 활성탄소섬유를 이용한 추진제 저장수명 연장 vol.49, pp.4, 2010, https://doi.org/10.9713/kcer.2011.49.4.443
  3. 계면활성제 수용액에 의해 재생된 활성탄 촉매의 탈질 성능 vol.49, pp.6, 2010, https://doi.org/10.9713/kcer.2011.49.6.739
  4. A high effective adsorbent of NOx: Preparation, characterization and performance of Ca-beta zeolites vol.165, pp.None, 2010, https://doi.org/10.1016/j.micromeso.2012.07.040
  5. 은첨착 대나무 활성탄의 제조와 NO 가스 반응 특성 vol.52, pp.6, 2010, https://doi.org/10.9713/kcer.2014.52.6.807
  6. 구리 촉매 담지 대나무 활성탄의 NO 가스 반응 특성 vol.38, pp.3, 2010, https://doi.org/10.4491/ksee.2016.38.3.144
  7. 알칼리금속과 알칼리 토금속 촉매 담지 대나무 활성탄의 NO 가스 반응 특성 vol.54, pp.5, 2010, https://doi.org/10.9713/kcer.2016.54.5.671
  8. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide vol.9, pp.None, 2010, https://doi.org/10.3762/bjnano.9.68
  9. Factors affecting SiC-ZrO2-MoSi2/Ni antioxidation coating made by composite plating on carbon fibres vol.118, pp.7, 2010, https://doi.org/10.1080/17436753.2019.1612658
  10. Relationship Between Oxygen-Containing Groups and Acidity of Graphene Oxide Supported Mn-Based SCR Catalysts and the Effects on the Catalytic Activity vol.150, pp.11, 2010, https://doi.org/10.1007/s10562-020-03218-8
  11. Efficient abatement of NOx emitted from automotive engines via adsorption on the Ba-CMK-3 adsorbents vol.28, pp.17, 2010, https://doi.org/10.1007/s11356-020-12077-0