DOI QR코드

DOI QR Code

Modification of Nocturnal Drainage Flow Due to Urban Surface Heat Flux

  • Lee, Soon-Hwan (Institute of Environmental Studies, Pusan National University) ;
  • Kim, Hae-Dong (Department of Environment Conservation, Keimyung University)
  • Received : 2009.12.31
  • Accepted : 2010.07.07
  • Published : 2010.11.01

Abstract

Dense observations and numerical experiments were carried out to estimate the modification of mesoscale circulation, particularly cold drainage wind. It was confirmed that nocturnal drainage flow can develop on clear calm summer day and change due to orographical forcing and the heterogeneity of heat flux induced by the discontinuity of land-use. The temperature of nocturnal drainage flow at Sungji Valley, Busan Korea, tended to increase as it passed over the urban surface due to anthropogenic heat. The increase in temperature reached 2.9 K at night. The roughness associated with the exchange of momentum flux alone and the pass of nocturnal drainage flow is important for modifying the characteristics of flow Numerical simulations carried out under various surface conditions showed good agreement with the observations. Urban heat fluxes from the surface during the day are fundamental causes of the changes in the urban mesoscale circulation. In addition, the impact of a discontinuity of surface heat flux on mesoscale flow modification tends to be greater at night than during the day because the direction of urban surface heat fluxes at night is different from that in rural areas. In addition, the criterion to estimate the increase in temperature nocturnal drainage flow was also proposed, and provided results that generally agreed with the numerical results.

Keywords

References

  1. Bhumralkar, C. M., 1975: Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model. J. Appl. Meteorol., 14, 1246-1258. https://doi.org/10.1175/1520-0450(1975)014<1246:NEOTCO>2.0.CO;2
  2. Deardorff, J., 1978: Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res., 83, 1889-1903. https://doi.org/10.1029/JC083iC04p01889
  3. Holden, J. J., S. H. Derbyshire, and S. E. Belcher, 2000: Tethered Balloon Observations of the Nocturnal Stable Boundary Layer in a Valley. Bound.-Layer Meteor., 97, 1-24. https://doi.org/10.1023/A:1002628924673
  4. Ichinose, T., K. Shimodozono, and K. Hanaki, 1999: Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ., 33, 3897-3909. https://doi.org/10.1016/S1352-2310(99)00132-6
  5. Karlsson, I. M., 2000: Nocturnal air temperature variations between forest and open areas. J. Appl. Meteorol., 39, 851-862. https://doi.org/10.1175/1520-0450(2000)039<0851:NATVBF>2.0.CO;2
  6. Kimura, F., and S. Arakawa, 1983: A numerical experiment of the nocturnal low level jet over Kanto plain. J. Meteror. Soc. Japan, 61, 848-861. https://doi.org/10.2151/jmsj1965.61.6_848
  7. Kimura, F., and S. Takahashi, 1991: The effects of landuse and anthropogenic heating on the surface temperature in the Tokyo metropolitan area: A Numerical experiment. Atmos. Environ., 25, 155-164. https://doi.org/10.1016/0957-1272(91)90050-O
  8. Kimura, F., and T. Kuwagata, 1993: Thermally induced wind passing from plain to basin over a mountain range. J. Appl. Meteorol, 32, 1538-1547. https://doi.org/10.1175/1520-0450(1993)032<1538:TIWPFP>2.0.CO;2
  9. Klemp, J. B., and D. R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111, 430-444. https://doi.org/10.1175/1520-0493(1983)111<0430:AUBCPI>2.0.CO;2
  10. Kondo, J., T. Nakamura, and T. Yamazaki, 1991: Estimation of the solar and downward atmospheric radiation. Tenki, 38, 41-48. (in Japanese)
  11. Kusaka, H., and F. Kimura, 2004: Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using a mesoscale model coupled with an urban canopy model. J. Appl. Meteorol., 43, 1899-1910. https://doi.org/10.1175/JAM2169.1
  12. Kusaka, H., F. Kimura, H. Hirakuchi, and M. Mizutomi, 2000: The effect of land-use alteration on the sea breeze and daytime heat island in the Tokyo metropolitan area. J. Meteor. Soc. Japan, 78, 405-420. https://doi.org/10.2151/jmsj1965.78.4_405
  13. Mellor, G. L., and T. Yamada, 1974: A hierachy of turbulence closure models of planetary boundary layers. J. Atmos. Sci., 31, 1791-1805. https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2
  14. Lee, S. H., 1998: Numerical studies on the impacts of topography and heterogeneous surface moisture estimated by satellite data on the local circulation. Ph.D. Thesis, Univ. Tsukuba, 121 pp.
  15. Lee, S. H., and H. W. Lee, 1994: Numerical modeling of atmosphere-surface interaction considering vegetation canopy. J. Environ. Sci. Soc. Korea, 3, 17-29. (in Korean)
  16. Lee, S. H., and F. Kimura, 2001: Comparison studies in the local circulations induced by land-use and by topography. Bound.-Layer Meteor., 101, 157-182. https://doi.org/10.1023/A:1019219412907
  17. Lee, S. H., and H. D. Kim, 2008: Effects of regional warming due to urbanization on daytime local circulations in a complex basin of the Daegu Metropolitan Area, Korea. J. Appl. Meteor. Climatol, 47, 1427-1441. https://doi.org/10.1175/JAMC1504.1
  18. Mahrt, L., D. Vickers, R. Nakamura, M. R. Soler, J. Sun, S. Burns, and D. H. Lenschow, 2001: Shallow drainage flows. Bound.-Layer Meteor., 101, 243-260. https://doi.org/10.1023/A:1019273314378
  19. Monti, P., H. J. S. Fernando, M. Princevac, W. C. Chan, T. A. Kowalewski, and E. R. Pardyjak, 2002: Observations of flow and turbulence in the nocturnal boundary layer over a slope. J. Atmos. Sci., 59, 2513-2534. https://doi.org/10.1175/1520-0469(2002)059<2513:OOFATI>2.0.CO;2
  20. Siebert, J., U. Sievers, and W. Zdunkowski, 1991: A one-dimensional simulation of the interaction between land surface processes and the atmosphere. Bound.-Layer Meteor. 59, 1-34.
  21. Son, E. H., Y. K. Kim, and J. H. Hong, 2000: Study on estimation of urban anthropogenic heat generation. J. Korean Soc. Atmos. Environ., 16, 37-47. (in Korean)
  22. Sun, J., and Coauthors, 2002: Intermittent turbulence associated with a density current passage in the stable boundary layer. Bound.-Layer Meteor., 105, 199-219. https://doi.org/10.1023/A:1019969131774
  23. Turnipseed, A. A., D. E. Anderson, P. D. Blanken, W. M. Baugh, and R. L. Monson, 2003: Airflows and turbulent flux measurements in mountainous terrain Part 1. Canopy and local effects. Agric. Forest Meteor., 119, 1-21. https://doi.org/10.1016/S0168-1923(03)00136-9

Cited by

  1. Heat Island Intensity in Seongseo, Daegu, South Korea - a Rural Suburb Containing Large Areas of Water vol.22, pp.10, 2010, https://doi.org/10.5322/jesi.2013.22.10.1337
  2. 지상 고밀도 관측 시스템을 이용한 대구의 여름철 고온현상 조사 vol.23, pp.9, 2014, https://doi.org/10.5322/jesi.2014.23.9.1619
  3. Local circulations in and around the Ulaanbaatar, Mongolia, metropolitan area vol.127, pp.4, 2010, https://doi.org/10.1007/s00703-015-0374-4
  4. A numerical study of the interactions of urban breeze circulation with mountain slope winds vol.120, pp.1, 2015, https://doi.org/10.1007/s00704-014-1162-7
  5. A theoretical study of the interactions of urban breeze circulation with mountain slope winds vol.121, pp.3, 2015, https://doi.org/10.1007/s00704-014-1252-6
  6. Observational Study for the Thermal Environment Evaluation of Summertime over the Asphalt Pavement - Case Study in Daegu 2014 - vol.24, pp.10, 2010, https://doi.org/10.5322/jesi.2015.24.10.1265
  7. 해안 및 내륙도시 내 토지이용도별 미세먼지 분포 특성 및 상호 관련성에 관한 연구 vol.24, pp.11, 2010, https://doi.org/10.5322/jesi.2015.24.11.1513
  8. 낙동강 구미 보의 증기 안개에 관한 연구 vol.25, pp.1, 2010, https://doi.org/10.5322/jesi.2016.25.1.163
  9. 낙동강 구미 보의 증기 안개 발생 시의 미기상학적 특성 vol.25, pp.3, 2010, https://doi.org/10.5322/jesi.2016.25.3.405
  10. Modeling the air‐sea feedback system of Madeira Island vol.9, pp.3, 2010, https://doi.org/10.1002/2016ms000861