DOI QR코드

DOI QR Code

Preparation and electrochemical properties of mesoporous $Co_3O_4$ crater-like microspheres as supercapacitor electrode materials

  • Wang, Lu (Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education) ;
  • Liu, Xiaoheng (Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education) ;
  • Wang, Xin (Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education) ;
  • Yang, Xujie (Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education) ;
  • Lu, Lude (Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education)
  • Received : 2010.02.25
  • Accepted : 2010.05.12
  • Published : 2010.12.30

Abstract

Mesoporous $Co_3O_4$ microspheres with unique crater-like morphology were obtained by utilizing the mesoporous silica material MCM-41 as a template. The analysis results of $N_2$ adsorption-desorption measurement indicate that the product has a large Brunauer-Emmett-Teller (BET) surface area of 60 $m^2\;g^{-1}$ and a narrow pore size distribution centering around 3.7 nm. Its electrochemical propertie were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements. The findings reveal that this novel morphology material has a smaller inner resistance of about 0.4 ${\Omega}$ and a higher onset frequency of 550 Hz. This material can provide a high specific capacitance of 102 F $g^{-1}$ and a large capacity retention of 74% in 500 continuous cycles test at a sweep rate of 3 mV $s^{-1}$. More significantly, the mass loading of electroactive species can reach as large a 2 mg $cm^{-2}$, which is one order of magnitude larger than common amount used.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation, Natural Science Foundation

References

  1. R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45 (2000) 2483-2498. https://doi.org/10.1016/S0013-4686(00)00354-6
  2. E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39 (2001) 937-950. https://doi.org/10.1016/S0008-6223(00)00183-4
  3. A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157 (2006) 11-27. https://doi.org/10.1016/j.jpowsour.2006.02.065
  4. M.D. Stoller, S.J. Park, Y.W. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8 (2008) 3498-3502. https://doi.org/10.1021/nl802558y
  5. J.P. Zheng, P.J. Cygan, T.R. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142 (1995) 2699-2703. https://doi.org/10.1149/1.2050077
  6. C. Hu, S.T. Xing, J.H. Qu, H. He, Catalytic ozonation of herbicide 2,4-D over cobalt oxide supported on mesoporous zirconia. J. Phys. Chem. C 112 (2008) 5978-5983. https://doi.org/10.1021/jp711463e
  7. H.P. Cong, S.H. Yu, Shape control of cobalt carbonate particles by a hydrothermal process in a mixed solvent: an efficient precursor to nanoporous cobalt oxide architectures and their sensing property. Cryst. Growth Des. 9 (2009) 210-217. https://doi.org/10.1021/cg8003068
  8. G.X. Wang, X.P. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, J. Yao, Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods. J. Phys. Chem. C 113 (2009) 4357-4361. https://doi.org/10.1021/jp8106149
  9. T.Y. Wei, C.H. Chen, K.H. Chang, S.Y. Lu, C.C. Hu, Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route. Chem. Mater. 21 (2009) 3228-3233. https://doi.org/10.1021/cm9007365
  10. V. Srinivasan, J.W. Weidner, Capacitance studies of cobalt oxide films formed via electrochemical precipitation. J. Power Sources 108 (2002) 15-20. https://doi.org/10.1016/S0378-7753(01)01012-6
  11. F.F. Tao, C.L. Gao, Z.H. Wen, Q. Wang, J.H. Li, Z. Xu, Cobalt oxide hollow microspheres with micro- and nano-scale composite structure: fabrication and electrochemical performance. J. Solid State Chem. 182 (2009) 1055-1060. https://doi.org/10.1016/j.jssc.2009.01.030
  12. L. Cao, M. Lu, H.L. Li, Preparation of mesoporous nanocrystalline $Co_3O_4$ and its applicability of porosity to the formation of electrochemical capacitance. J. Electrochem. Soc. 152 (2005) A871-A875. https://doi.org/10.1149/1.1883354
  13. C.C. Hu, T.Y. Hsu, Effects of complex agents on the anodic deposition and electrochemical characteristics of cobalt oxides. Electrochim. Acta 53 (2008) 2386-2395. https://doi.org/10.1016/j.electacta.2007.09.060
  14. H. Zhou, D. Li, M. Hibino, I. Honma, A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities. Angew. Chem. Int. Ed. 44 (2005) 797-802. https://doi.org/10.1002/anie.200460937
  15. L. Cao, F. Xu, Y.Y. Liang, H.L. Li, Preparation of the novel nanocomposite Co $(OH)_2$/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Adv. Mater. 16 (2004) 1853-1857. https://doi.org/10.1002/adma.200400183
  16. B.Z. Tian, X.Y. Liu, H.F. Yang, S.H. Xie, C.Z. Yu, B. Tu, D.Y. Zhao, General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Adv. Mater. 15 (2003) 1370-1374. https://doi.org/10.1002/adma.200305211
  17. B.Z. Tian, X.Y. Liu, L.A. Solovyov, Z. Liu, H.F. Yang, Z.D. Zhang, S.H. Xie, F. Q. Zhang, B. Tu, C.Z. Yu, O. Terasaki, D.Y. Zhao, Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures. J. Am. Chem. Soc. 126 (2004) 865-875. https://doi.org/10.1021/ja037877t
  18. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359 (1992) 710-712. https://doi.org/10.1038/359710a0
  19. X.S. Zhao, G.Q. Lu, G.J. Millar, Advances in mesoporous molecular sieve MCM-41. Ind. Eng. Chem. Res. 35 (1996) 2075-2090. https://doi.org/10.1021/ie950702a
  20. M. Grun, K.K. Unger, A. Matsumoto, K. Tsutsumi, Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Microporous Mesoporous Mater. 27 (1999) 207-216. https://doi.org/10.1016/S1387-1811(98)00255-8
  21. L.L. Zhang, T.X. Wei, W.J. Wang, X.S. Zhao, Manganese oxideecarbon composite as supercapacitor electrode materials. Microporous Mesoporous Mater. 123 (2009) 260-267. https://doi.org/10.1016/j.micromeso.2009.04.008
  22. T. Tsoncheva, L. Ivanova, C. Minchev, M. Fröba, Cobalt-modified mesoporous MgO, $ZrO_2$, and $CeO_2$ oxides as catalysts for methanol decomposition. J. Colloid Interface Sci. 333 (2009) 277-284. https://doi.org/10.1016/j.jcis.2008.12.070
  23. C.W. Tang, C.B. Wang, S.H. Chien, Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TGeMS. Thermochim. Acta 473 (2008) 68-73. https://doi.org/10.1016/j.tca.2008.04.015
  24. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. IUPAC 57 (1985) 603-619. https://doi.org/10.1351/pac198557040603
  25. Q.H. Huang, X.Y. Wang, J. Li, Characterization and performance of hydrous manganese oxide prepared by electrochemical method and its application for supercapacitors. Electrochim. Acta 52 (2007) 1758-1762.
  26. V. Gupta, S. Gupta, N. Miura, Electrochemically synthesized large area network of $Co_xNi_yAl_z$ layered triple hydroxides nanosheets: a high performance supercapacitor. J. Power Sources 189 (2009) 1292-1295. https://doi.org/10.1016/j.jpowsour.2009.01.026
  27. C.C. Hu, C.C. Wang, K.H. Chang, A comparison study of the capacitive behavior for solegel-derived and co-annealed rutheniumetin oxide composites. Electrochim. Acta 52 (2007) 2691-2700. https://doi.org/10.1016/j.electacta.2006.09.026
  28. C.W. Huang, Y.T. Wu, C.C. Hu, Y.Y. Li, Textural and electrochemical characterization of porous carbon nanofibers as electrodes for supercapacitors. J. Power Sources 172 (2007) 460-467. https://doi.org/10.1016/j.jpowsour.2007.07.009
  29. L. Cui, J. Li, X.G. Zhang, Preparation and properties of $Co_3O_4$ nanorods as supercapacitor material. J. Appl. Electrochem. 39 (2009) 1871-1876. https://doi.org/10.1007/s10800-009-9891-5

Cited by

  1. Original Conductive Nano-Co3O4 Investigated as Electrode Material for Hybrid Supercapacitors vol.14, pp.10, 2011, https://doi.org/10.1149/1.3609259
  2. Ilmenite FeTiO3 Nanoflowers and Their Pseudocapacitance vol.115, pp.35, 2010, https://doi.org/10.1021/jp203345s
  3. 3D Hierarchical Co3O4 Twin‐Spheres with an Urchin‐Like Structure: Large‐Scale Synthesis, Multistep‐Splitting Growth, and Electrochemical Pseudocapacitors vol.22, pp.19, 2010, https://doi.org/10.1002/adfm.201200519
  4. Synthesis and electrochemical capacitive behaviors of Co3O4 nanostructures from a novel biotemplating technique vol.16, pp.1, 2012, https://doi.org/10.1007/s10008-011-1327-6
  5. High-Energy Density Asymmetric Supercapacitor Based on Electrospun Vanadium Pentoxide and Polyaniline Nanofibers in Aqueous Electrolyte vol.159, pp.9, 2012, https://doi.org/10.1149/2.040209jes
  6. A review of electrode materials for electrochemical supercapacitors vol.41, pp.2, 2010, https://doi.org/10.1039/c1cs15060j
  7. Electrochemical preparation and properties of nanostructured Co3O4 as supercapacitor material vol.42, pp.2, 2010, https://doi.org/10.1007/s10800-011-0375-z
  8. Cobalt(II,III) oxide hollow structures: fabrication, properties and applications vol.22, pp.44, 2010, https://doi.org/10.1039/c2jm33940d
  9. Electrospun polyaniline nanofibers web electrodes for supercapacitors vol.129, pp.4, 2010, https://doi.org/10.1002/app.38859
  10. Embedding Co3O4 nanoparticles in SBA-15 supported carbon nanomembrane for advanced supercapacitor materials vol.1, pp.9, 2013, https://doi.org/10.1039/c2ta01253g
  11. 1-Dimensional porous α-Fe2O3 nanorods as high performance electrode material for supercapacitors vol.3, pp.47, 2010, https://doi.org/10.1039/c3ra44159h
  12. Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors vol.1, pp.24, 2010, https://doi.org/10.1039/c3ta11054k
  13. Preparation and electrochemical performance of the layered cobalt oxide (Co3O4) as supercapacitor electrode material vol.17, pp.1, 2013, https://doi.org/10.1007/s10008-012-1856-7
  14. Degradation of organic pollutants by a Co3O4-graphite composite electrode in an electro-Fenton-like system vol.58, pp.19, 2010, https://doi.org/10.1007/s11434-013-5784-4
  15. Rheological phase synthesis and electrochemical performance of Co3O4 for supercapacitors vol.49, pp.11, 2013, https://doi.org/10.1134/s1023193513110141
  16. Rheological phase synthesis and electrochemical performance of Co3O4 for supercapacitors vol.49, pp.11, 2013, https://doi.org/10.1134/s1023193513110141
  17. Facile growth of heparin-controlled porous polyaniline nanofiber networks and their application in supercapacitors vol.4, pp.10, 2010, https://doi.org/10.1039/c3ra45774e
  18. A simple approach to prepare nickel hydroxide nanosheets for enhanced pseudocapacitive performance vol.4, pp.37, 2014, https://doi.org/10.1039/c4ra01719f
  19. Graphene/heparin template-controlled polyaniline nanofibers composite for high energy density supercapacitor electrode vol.1, pp.4, 2010, https://doi.org/10.1088/2053-1591/1/4/045051
  20. Synthesis, characterization, and electrochemical properties of CoMoO4 nanostructures vol.39, pp.10, 2010, https://doi.org/10.1016/j.ijhydene.2014.01.069
  21. Co3O4/SiO2 nanocomposites for supercapacitor application vol.18, pp.9, 2010, https://doi.org/10.1007/s10008-014-2510-3
  22. Synthesis and electrochemical performance of mesoporous nickel oxide using mixed surfactant template vol.19, pp.2, 2010, https://doi.org/10.1179/1432891714z.0000000001062
  23. Facile synthesis of NZMC/Co3O4 composite electrode materials at low temperature and its application in electrochemical capacitor vol.19, pp.6, 2015, https://doi.org/10.1007/s10008-015-2803-1
  24. Hierarchical Co3O4 nanoflowers assembled from nanosheets: facile synthesis and their application in supercapacitors vol.26, pp.6, 2010, https://doi.org/10.1007/s10854-015-2951-1
  25. Mesoporous Transition Metal Oxides for Supercapacitors vol.5, pp.4, 2010, https://doi.org/10.3390/nano5041667
  26. Synthesis of Co1−xFex Hydroxide Nanoplatelets and Its Electrochemical Performances as Supercapacitor Electrode Materials vol.84, pp.1, 2010, https://doi.org/10.5796/electrochemistry.84.2
  27. Cd doped porous Co3O4 nanosheets as electrode material for high performance supercapacitor application vol.196, pp.None, 2016, https://doi.org/10.1016/j.electacta.2016.02.195
  28. Template method to controllable synthesis 3D porous NiCo2O4 with enhanced capacitance and stability for supercapacitors vol.468, pp.None, 2010, https://doi.org/10.1016/j.jcis.2016.01.020
  29. Facile synthesis of mesoporous Co3O4 nanowires for application in supercapacitors vol.28, pp.22, 2010, https://doi.org/10.1007/s10854-017-7598-7
  30. Hierarchical Co3O4 microstructures decorated with Ag and Cu oxides: Study of photocatalytic and electrochemical properties vol.32, pp.6, 2010, https://doi.org/10.1007/s11595-017-1750-3
  31. Self-Assembly of 3D Fennel-Like Co3O4 with Thirty-Six Surfaces for High Performance Supercapacitor vol.2017, pp.None, 2010, https://doi.org/10.1155/2017/1404328
  32. One-Dimensional Assembly of Conductive and Capacitive Metal Oxide Electrodes for High-Performance Asymmetric Supercapacitors vol.9, pp.12, 2017, https://doi.org/10.1021/acsami.7b00676
  33. Sonochemical synthesis of Co2SnO4 nanocubes for supercapacitor applications vol.41, pp.None, 2010, https://doi.org/10.1016/j.ultsonch.2017.10.006
  34. Addition of redox additives—synergic strategy for enhancing the electrochemical activity of spinel Co3O4 based supercapacitors vol.52, pp.15, 2010, https://doi.org/10.1088/1361-6463/ab00d3
  35. Sonochemical synthesis of Co3O4/graphene/Co3O4 sandwich architecture for high-performance supercapacitors vol.49, pp.11, 2010, https://doi.org/10.1007/s10800-019-01357-4
  36. Coexistence of resistive switching and magnetism modulation in sol-gel derived nanocrystalline spinel Co3O4 thin films vol.19, pp.11, 2019, https://doi.org/10.1016/j.cap.2019.08.016
  37. Hollow nanostructures of metal oxides as emerging electrode materials for high performance supercapacitors vol.22, pp.9, 2020, https://doi.org/10.1039/c9ce01547g
  38. Facile synthesis of Cu-CuFe2O4 nanozymes for sensitive assay of H2O2 and GSH vol.49, pp.36, 2020, https://doi.org/10.1039/d0dt02395g
  39. O/N Co‐Doped, Layered Porous Carbon with Mesoporosity up to 99 % for Ultrahigh‐Rate Capability Supercapacitors vol.3, pp.10, 2010, https://doi.org/10.1002/batt.202000037
  40. Elevated performance of binder-free Co3O4 electrode for the supercapacitor applications vol.2, pp.1, 2010, https://doi.org/10.1088/2632-959x/abd686
  41. Facile CO 3 O 4 nanoparticles deposited on polyvinylpyrrolidine for efficient water oxidation in alkaline media vol.68, pp.12, 2010, https://doi.org/10.1002/jccs.202100365