DOI QR코드

DOI QR Code

Adsorption of 1,3-Benzodithiolylium Tetrafluoroborate (1,3-BDYT) on Carbon Nanotubes

  • Park, So-Hee (Nano Bio Fusion Research Center, Korea Research Institute of Chemical Technology) ;
  • Kong, Ki-Jeong (Nano Bio Fusion Research Center, Korea Research Institute of Chemical Technology) ;
  • So, Hye-Mi (Nano Bio Fusion Research Center, Korea Research Institute of Chemical Technology) ;
  • Lee, Jeong-O (Nano Bio Fusion Research Center, Korea Research Institute of Chemical Technology) ;
  • Chang, Hyun-Ju (Nano Bio Fusion Research Center, Korea Research Institute of Chemical Technology) ;
  • Yee, Jae-Yong (Department of Physiology and Biophysics, Eulji University)
  • Received : 2010.05.20
  • Accepted : 2010.05.24
  • Published : 2010.07.15

Abstract

We present systematic first-principles studies of the adsorption of 1,3-benzodithiolylium tetrafluoroborate (1,3-BDYT) on various single-walled carbon nanotubes (CNTs). 1,3-BDYT was reported as one of the electrophilic molecules that suppress the metallic properties of CNTs when it is adsorbed on the surfaces of CNTs. It was found that 1,3-BDYT tends to be more strongly bound to metallic CNTs of smaller diameters than to semiconducting CNTs. It interacts with CNTs via covalent sp3 bonding. From the band structure calculations, we found that 1,3-BDYT could open the band gap of the metallic CNTs by generating molecular states near the Fermi level via sp3 hybridization.

Keywords

Acknowledgement

Supported by : NRF

References

  1. S. Ijima, Nature 354, 56 (1991). https://doi.org/10.1038/354056a0
  2. R. Krupke, F. Hennrich, H. von Lohneysen and M. Kappes, Science 301, 344 (2003). https://doi.org/10.1126/science.1086534
  3. M. Zeng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Rustig, R. E. Richardson and N. G. Tassi, Nat. Mater. 2, 338 (2003). https://doi.org/10.1038/nmat877
  4. P. G. Collins, M. S. Arnold and P. Avouris, Science 292, 706 (2001). https://doi.org/10.1126/science.1058782
  5. M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Baron, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour and R. E. Smalley, Science 301, 1519 (2003). https://doi.org/10.1126/science.1087691
  6. Y. Maeda et al., J. Am. Chem. Soc. 127, 10287 (2005). https://doi.org/10.1021/ja051774o
  7. K. H. An, J. S. Park, C-M. Yang, S. Y. Jeong, S. J. Lim, C. Kang, J.-H. Son, M. S. Jeong and Y. H. Lee, J. Am. Chem. Soc. 127, 5196 (2005). https://doi.org/10.1021/ja0428199
  8. H.-M. So, B.-K. Kim, D.-W. Park, B. S. Kim, J.-J. Kim, K.-J. Kong, H. Chang and J.-O. Lee, J. Am. Chem. Soc. 129, 4866 (2007). https://doi.org/10.1021/ja068738p
  9. K. H. An, C.-M. Yang, K. Seo, K. A. Park and Y. H. Lee, Curr. Appl. Phys. 6S1, e99 (2006).
  10. C.-M. Yang, J. S. Park, K. H. An, C. L. Seong, K. Seo, B. Kim, K. A. Park, S. Han, C. Y. Park and Y. H. Lee, J. Phys. Chem. B 109, 19242 (2005).
  11. A. J. Du and S. C. Smith, Mol. Simul. 32, 1212 (2006).
  12. J. Lu et al., J. Am. Chem. Soc. 128, 5114 (2006). https://doi.org/10.1021/ja058214+
  13. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993) https://doi.org/10.1103/PhysRevB.47.558
  14. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994) https://doi.org/10.1103/PhysRevB.49.14251
  15. G. Kresse and J. Furthmueller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  16. $DMol^3$ is a registered software product of Accelrys, Inc.; B. J. Delley, Chem. Phys. 92, 508 (1990).
  17. N. Park, Y. Miyamoto, K. Lee, W. I. Choi, J. Ihm, J. Yu and S. Han, Chem. Phys. Lett. 403, 135 (2005). https://doi.org/10.1016/j.cplett.2005.01.005
  18. K. S. Kim, K. A. Park, H. J. Kim, D. J. Bae, S. C. Lim and Y. H. Lee, J. Korean Phys. Soc. 42, S137 (2003).