DOI QR코드

DOI QR Code

Determination of the Optic Axis Distribution of a Hybridly Aligned Discotic Material for Wide-view Films

  • Ryu, Jang-Wi (Department of Molecular Science and Technology, Ajou University) ;
  • Kim, Sang-Youl (Department of Molecular Science and Technology, Ajou University) ;
  • Kim, Yong-Ki (Samsung Advanced Technology Training Institute)
  • Received : 2010.06.25
  • Accepted : 2010.07.13
  • Published : 2010.08.13

Abstract

We report the non-uniform distribution of discotic materials in a wide-view film for TN-LCD (twisted nematic liquid crystal displays). To find the optic axis distribution of the discotic materials, we used an improved $2{\times}2$ Jones matrix method and the modelling technique of ellipsometry. The wide-view film was shown to have discotic liquid crystals whose tilt angles varied exponentially from the in-plane direction to the out-of-plane direction.

Keywords

References

  1. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, Inc., New York, 1999).
  2. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystals Devices (John Wiley & Sons Ltd., Chichester, 2006).
  3. H. Mori, J. Disp. Technol. 1, 179 (2005). https://doi.org/10.1109/JDT.2005.858935
  4. Y. Ito, R. Matsubara, R. Nakamura, M. Nagai, S. Nakamura, H. Mori and K. Mihayashi, SID Int. Symp. Dig. Tec. 36, 986 (2005). https://doi.org/10.1889/1.2036615
  5. S. H. Hwang, Y. J. Lim, M. H. Lee, S. H. Lee, G. D. Lee, H. Kang, K. J. Kim and H. C. Choi, Curr. Appl. Phys. 7, 690 (2007). https://doi.org/10.1016/j.cap.2007.03.006
  6. D. W. Berreman, J. Opt. Soc. Am. 62, 502 (1972). https://doi.org/10.1364/JOSA.62.000502
  7. D. W. Berreman, J. Opt. Soc. Am. 63, 1374 (1973). https://doi.org/10.1364/JOSA.63.001374
  8. H. W¨ohler, M. Fritsch, G. Haas and D. A. Mlynski, J. Opt. Soc. Am. A 5, 1554 (1988). https://doi.org/10.1364/JOSAA.5.001554
  9. C. Gu and P. Yeh, J. Opt. Soc. Am. A 10, 966 (1993). https://doi.org/10.1364/JOSAA.10.000966
  10. A. Lien and C. J. Chen, Jpn. J. Appl. Phys. 35, L1200 (1996). https://doi.org/10.1143/JJAP.35.L1200
  11. F. H. Yu and H. S. Kwok, J. Opt. Soc. Am. A 16, 2772 (1999). https://doi.org/10.1364/JOSAA.16.002772
  12. J. N. Hilfiker, C. M. Herzinger, T. Wagner, A. Marino, G. Delgais and G. Abbate, Thin Solid Films 455-456, 591 (2004). https://doi.org/10.1016/j.tsf.2004.02.011
  13. J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant and P. J. Bos, Thin Solid Films 455-456, 596 (2004). https://doi.org/10.1016/j.tsf.2004.01.031
  14. H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew Inc., Norwich, 2005).
  15. S. Y. Kim, Ellipsometry (Ajou University Press, Suwon, 2000).
  16. J. W. Ryu, Y. S. Shin, S. Y. Kim, S. H. An and Y. K. Kim, Korean J. Optics & Photonics 19, 150 (2008). https://doi.org/10.3807/HKH.2008.19.2.150
  17. J. W. Ryu, S. Y. Kim and Y. K. Kim, Korean J. Optics & Photonics 20, 241 (2009). https://doi.org/10.3807/KJOP.2009.20.4.241
  18. J. W. Ryu, S. Y. Kim and Y. K. Kim, Korean J. Optics & Photonics (in press, 2010).
  19. http://www.ellipsotech.com.

Cited by

  1. Parametric model dielectric functions of InAs for temperatures from 22 to 675 K vol.61, pp.11, 2010, https://doi.org/10.3938/jkps.61.1821
  2. Dielectric function and energy of the E 0 critical point of hexagonal GaN at 26 K studied by using spectroscopic ellipsometry vol.61, pp.5, 2010, https://doi.org/10.3938/jkps.61.791
  3. Temperature dependence of the dielectric function and critical-point energies of InAs vol.61, pp.1, 2012, https://doi.org/10.3938/jkps.61.97
  4. 개선된 투과형 타원계를 사용한 러빙된 Polyimide 배향막의 초미세 위상지연 정밀 측정 vol.24, pp.2, 2010, https://doi.org/10.3807/kjop.2013.24.2.077
  5. 단축이방성 배향막이 코팅되어 있는 다층박막시료의 타원식 vol.24, pp.5, 2010, https://doi.org/10.3807/kjop.2013.24.5.271
  6. Analytic determination of the dielectric function of InSb at energies from 0.74 to 6.42 eV at temperatures from 31 to 675 K vol.64, pp.12, 2010, https://doi.org/10.3938/jkps.64.1872
  7. Ellipsometric study of the temperature dependences of the dielectric function and the critical points of AlSb at temperatures from 300 to 803 K vol.65, pp.4, 2010, https://doi.org/10.3938/jkps.65.515
  8. Analytic representation of the dielectric function of GaN for temperatures from 26 to 690 K vol.65, pp.5, 2010, https://doi.org/10.3938/jkps.65.733
  9. Study of Ultra-Small Optical Anisotropy Profile of Rubbed Polyimide Film by using Transmission Ellipsometry vol.18, pp.2, 2010, https://doi.org/10.3807/josk.2014.18.2.156
  10. Measurement of refraction index of thick and nontransparent isotropic material using transmission microwave ellipsometry vol.57, pp.4, 2015, https://doi.org/10.1002/mop.28998
  11. Ellipsometric Characterization of Rubbed Polyimide Alignment Layer in Relation with Distribution of Liquid Crystal Molecules in Twisted Nematic Cell vol.2, pp.2, 2010, https://doi.org/10.3807/copp.2018.2.2.185
  12. Optical, mechanical, and photoelastic anisotropy of biaxially stretched polyethylene terephthalate films studied using transmission ellipsometer equipped with strain camera and stress gauge vol.57, pp.3, 2019, https://doi.org/10.1002/polb.24766