DOI QR코드

DOI QR Code

Optimization and Tolerance Scheme for a Mirror Mount Design Based on Optomechanical Performance

  • Kihm, Ha-Gyong (Center for Space Optics, Korea Research Institute of Standards and Science) ;
  • Lee, Yun-Woo (Center for Space Optics, Korea Research Institute of Standards and Science)
  • Received : 2010.05.28
  • Accepted : 2010.08.13
  • Published : 2010.09.15

Abstract

We present the design optimization and tolerance scheme for the fold mirror system in our satellite telescope. A new type of mirror and mount flexure is proposed. The mirror is light-weight and is designed with an asymmetric off-axis configuration. The mount is a combination of monolithic axial and lateral supports. The design parameters of the flexure mount are optimized for optomechanical performances by using a simulated annealing method. The sensitivities of the optomechanical performances to the design parameters are tabulated to obtain tolerance for the critical dimensions by using finite element analysis (FEA). Optical distortions are examined with Zernike polynomials for qualitative analysis and design feedback. This unprecedented mirror and mount design would be a promising candidate for an asymmetric or off-axis optical system.

Keywords

References

  1. O. Chin, Appl. Opt. 3, 895 (1964). https://doi.org/10.1364/AO.3.000895
  2. D. Wilson and K. D. Li Dessau, Opt. Photonics News 16, 40 (2005).
  3. P. R. Yoder, Jr., P. Yoder, D. Vukobratovich and R. A. Paquin, Opto-Mechanical Systems Design, 3rd ed. (CRC Press, Boca Raton, FL, 2005).
  4. T. Pamplona, Ch. Rossin, L. Martin, G. Moreaux, E. Prieto, P. Laurent, E. Grassi, J-L. Boit, L. Castinel, J. Garcia and B. Milliard, Proc. SPIE Int. Soc. Opt. Eng. 7018, 701828 (2008).
  5. E. T. Kvamme and M. T. Sullivan, Proc. SPIE Int. Soc. Opt. Eng. 5528, 264 (2004).
  6. Y. K. Yong, T-F. Lu and D. C. Handley, Precis. Eng. 32, 63 (2008). https://doi.org/10.1016/j.precisioneng.2007.05.002
  7. Y. Tian, B. Shirinzadeh, D. Zhang and Y. Zhong, Precis. Eng. 34, 92 (2010). https://doi.org/10.1016/j.precisioneng.2009.03.004
  8. N. Lobontiu, J. S. N. Paine, E. Garcia and M. Goldfarb, J. Mech. Des. 123, 346 (2001). https://doi.org/10.1115/1.1372190
  9. L. Furey, T. Dubos, D. Hansen and J. Samuels-Schwartz, Appl. Opt. 32, 1703 (1993). https://doi.org/10.1364/AO.32.001703
  10. Y. Wu and Z. Zhou, Rev. Sci. Instrum. 73, 3101 (2002). https://doi.org/10.1063/1.1494855
  11. Y. M. Tseytlin, Rev. Sci. Instrum. 73, 3363 (2002). https://doi.org/10.1063/1.1499761
  12. K-B. Choi and C. S. Han, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. 221, 385 (2007).
  13. W. O. Schotborgh, F. G. M. Kokkeler, H. Tragter and F. J. A. M. van Houten, Precis. Eng. 29, 41 (2005). https://doi.org/10.1016/j.precisioneng.2004.04.003
  14. G. Schwesinger, J. Opt. Soc. Am. 44, 417 (1954). https://doi.org/10.1364/JOSA.44.000417
  15. A. J. Malvick, Appl. Opt. 11, 575 (1972). https://doi.org/10.1364/AO.11.000575
  16. B. Mack, Appl. Opt. 19, 1000 (1980). https://doi.org/10.1364/AO.19.001000
  17. I. K. Moon, Y. W. Lee and Y-S. Kim, J. Korean Phys. Soc. 54, 1506 (2009). https://doi.org/10.3938/jkps.54.1506
  18. D.-S. Wan, J. R. P. Angel and R. E. Parks, Appl. Opt. 28, 354 (1989). https://doi.org/10.1364/AO.28.000354
  19. S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi, Science 13, 671 (1983).
  20. S. Kirkpatrick, J. Stat. Phys. 34, 975 (1984). https://doi.org/10.1007/BF01009452
  21. D. Malacara, Optical Shop Testing, 2nd ed. (Wiley-Interscience, New York, 1992).
  22. S. Magarill, Proc. SPIE Int. Soc. Opt. Eng. 3786, 220 (1999).
  23. C.-C. Cheng, Proc. SPIE Int. Soc. Opt. Eng. 6665, 66650H (2007).

Cited by

  1. 대구경 비구면 광학기술과 응용 vol.24, pp.3, 2010, https://doi.org/10.3807/kjop.2013.24.3.111