DOI QR코드

DOI QR Code

Investigating the negative tension stiffening effect of reinforced concrete

  • Zanuy, Carlos (Department of Continuum Mechanics and Structures, E.T.S. Ingenieros de Caminos, Canales y Puertos, Universidad Politecnica de Madrid)
  • Received : 2008.11.13
  • Accepted : 2009.11.11
  • Published : 2010.01.30

Abstract

The behaviour of a reinforced concrete tension member is governed by the contribution of concrete between cracks, tension stiffening effect. Under highly repeated loading, this contribution is progressively reduced and the member response approximates that given by the fully cracked member. When focusing on the unloaded state, experiments show deformations larger than those of the naked reinforcement. This has been referred to as negative tension stiffening and is due to the fact that concrete carries compressive stresses along the crack spacing, even thought the tie is subjected to an external tensile force. In this paper a cycle-dependent approach is presented to reproduce the behaviour of the axially loaded tension member, paying attention to the negative tension stiffening contribution. The interaction of cyclic bond degradation and time-dependent effects of concrete is investigated. Finally, some practical diagrams are given to account for the negative tension stiffening effect in reinforced concrete elements.

Keywords

References

  1. Balazs, G.L. (1991), "Fatigue of bond", ACI Mater. J., 88(6), 620-629.
  2. Balazs, G.L. (1993), "Cracking analysis based on slip and bond stresses", ACI Mater. J., 90(4), 340-348.
  3. Beeby, A.W. and Scott, R.H. (2006), "Mechanisms of long-term decay of tension stiffening", Mag. Concrete Res., 58(5), 255-266. https://doi.org/10.1680/macr.2006.58.5.255
  4. Bischoff, P.H. (2001), "Effects of shrinkage on tension stiffening and cracking in reinforced concrete", Can. J. Civil Eng., 282, 363-374.
  5. Blaschke, F. and Mehlhorn, G. (1995), "Verbundverhalten zwischen Stahl und Beton unter schwellender Belastung im Gebrauchslastbereich", Betonund Stahlbetonbau, 90(3), 77-79.
  6. CEB - FIP (1991), CEB - FIP Model Code (1990), Lausanne, Switzerland.
  7. CEN (2004), Eurocode EC-2. prEN 1992-1-1:2004, Brussels, Belgium.
  8. Chan, H.C., Cheung, Y.K. and Huang, Y.P. (1992), "Crack analysis of reinforced concrete tension members", J. Struct. Eng., ASCE, 118(8), 2118-2132. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:8(2118)
  9. Cornelissen, H.A.W. and Reinhardt, H.W. (1984), "Uniaxial tensile fatigue failure of concrete under constant amplitude and programme loading", Mag. Concrete Res., 36(129), 219-226.
  10. Fernandez Ruiz, M. (2003), Evaluación no lineal de los efectos estructurales producidos por las deformaciones diferidas del hormigón y el acero, Ph.D. Thesis, Universidad Politecnica de Madrid.
  11. FIB (2000), Bond of Reinforcement in Concrete. State of the Art Report. Bulletin no. 10, federation internationale du beton, Lausanne, Switzerland.
  12. Fields, K. and Bischoff, P.H. (2004), "Tension stiffening and cracking of high-strength reinforced concrete tension members", ACI Struct. J., 101(4), 447-456.
  13. Ghali, A. and Favre, R. (1994), Concrete Structures: Stresses and Deformations, E & FN SPON Editions,
  14. Gilbert, I.R. (2007), "Tension stiffening in lightly reinforced concrete slabs", J. Struct. Eng., ASCE, 133(6), 899- 903. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(899)
  15. Gunther, G. and Mehlhorn, G. (1990). "Tension-stiffening, crack spacings, crack widths and bond-slip", Protection of Concrete, London, UK, 589-600.
  16. Gomez Navarro, M. and Lebet, J.P. (2001), "Concrete cracking in composite bridges: tests, models and design proposals", Struct. Eng. Int., 11(3), 184-190. https://doi.org/10.2749/101686601780346922
  17. Kaklauskas, G. and Ghaboussi, J. (2001), "Stress-strain relations for cracked tensile concrete from RC beam tests", J. Struct. Eng., 127(1), 64-73. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:1(64)
  18. Kreller, H. (1990), Zum nichtlinearen Trag- und Verformungsverhalten von Stahlbetonstabtragwerken unter Lastund Zwangeinwirkung, Deutscher Ausschuss fur Stahlbeton. Heft 409, Universität Stuttgart, Germany.
  19. Konig, G. and Fehling, E. (1988), "Zur Rissbreitenbeschrankung im Stahlbetonbau", Beton -und Stahlbetonbau, 6 /1988 (161-167)
  20. Konig, G. and Fehling, E. (1988), "Zur Rissbreitenbeschrankung im Stahlbetonbau", Beton- und Stahlbetonbau, 7/1988 (199-204).
  21. Marti, P., Alvarez, M., Kaufmann, W. et al. (1998), "Tension chord model for structural concrete", Struct. Eng. Int., 8(4), 287-298. https://doi.org/10.2749/101686698780488875
  22. Morita, S. and Kaku, T. (1973), "Local bond-stress relationship under repeated loading", IABSE Symposium, Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, Lisbon, Portugal, 221-226.
  23. Muttoni, A. and Fernandez Ruiz, M. (2007), "Concrete cracking in tension members and application to deck slabs of bridges", J. Bridge Eng., ASCE, 12(5), 646-653. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:5(646)
  24. Oh, B.H. and Kim, S.H. (2007), "Realistic models for local bond stress-slip of reinforced concrete under repeated loading", J. Struct. Eng., ASCE, 133(2), 216-224. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(216)
  25. Plaines, P., Tassios, T. and Vintzeleou, E. (1982), "Bond relaxation and bond-slip creep under monotonic and cyclic actions", Proceedings of the International Conference, Paisley, France, 193-204.
  26. Pochanart, S. and Harmon, T. (1989), "Bond-slip model for generalized excitations including fatigue", ACI Mater. J., 86(5), 465-474.
  27. Rehm, G. and Eligehausen, R. (1979), "Bond of ribbed bars under high cycle repeated loads", ACI J., 76(15), 297-309.
  28. Sippel, T. (1996), Zum Trag- und Verformungsverhalten von Stahlbetontragwerken unter Betriebsbelastung, Ph.D. Thesis, Technische Universität Stuttgart, Germany.
  29. Tassios, T.P. and Yannopoulos, P.J. (1981), "Analytical studies on reinforced concrete members under cyclic loading based on bond stress slip relations", ACI J., 78(3), 206-216.
  30. Vecchio, F.J. (2000), "Disturbed stress field model for reinforced concrete: formulation", J. Struct. Eng., ASCE, 126(9), 1070-1077. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1070)
  31. Vecchio, F.V. and Collins, M.P. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", ACI J., 83(2), 219-231.
  32. Yankelevsky, D.Z., Jabareen, M. and Abutbul, A.D. (2008), "One-dimensional analysis of tension stiffening in reinforced concrete with discrete cracks", Eng. Struct., 30(1), 206-217. https://doi.org/10.1016/j.engstruct.2007.03.013

Cited by

  1. Evaluation of Fatigue Bond Strength of Anchorage Zones with a Mechanical Model vol.139, pp.1, 2013, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000602
  2. Finite element study of bond strength between concrete and reinforcement under uneven confinement condition vol.14, pp.3, 2013, https://doi.org/10.1002/suco.201200019
  3. Investigation of Shrinkage of Concrete Mixtures Used for Bridge Construction in Lithuania vol.6, pp.2, 2011, https://doi.org/10.3846/bjrbe.2011.10
  4. Performance of the centre section of broad gage prestressed concrete sleepers under fatigue loading and controlled cracking 2018, https://doi.org/10.1002/suco.201600229
  5. Time-dependent changes in the instantaneous stiffness of reinforced concrete beams vol.126, 2016, https://doi.org/10.1016/j.engstruct.2016.08.025
  6. Fatigue Behavior of Reinforced Concrete Haunched Beams without Stirrups vol.112, pp.3, 2015, https://doi.org/10.14359/51687411
  7. Estimation of parameters defining negative tension stiffening vol.32, pp.10, 2010, https://doi.org/10.1016/j.engstruct.2010.07.009
  8. Investigating deformations of RC beams: experimental and analytical study vol.13, pp.6, 2014, https://doi.org/10.12989/cac.2014.13.6.799
  9. Transverse fatigue behaviour of lightly reinforced concrete bridge decks vol.33, pp.10, 2011, https://doi.org/10.1016/j.engstruct.2011.06.008
  10. Behaviour of cracked reinforced concrete beams under repeated and sustained load types vol.56, 2013, https://doi.org/10.1016/j.engstruct.2013.05.034
  11. Some remarks on the interaction of long-term effects in deflections of RC members vol.124, 2016, https://doi.org/10.1016/j.engstruct.2016.06.025
  12. Modeling of Tension-Stiffening Behavior of Reinforced Concrete Beams vol.368-373, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.368-373.2098
  13. Flexural behavior of concrete beams reinforced with aramid fiber reinforced polymer (AFRP) bars vol.38, pp.4, 2010, https://doi.org/10.12989/sem.2011.38.4.459
  14. Modelos de transferencia del pretensado: análisis comparativo vol.65, pp.272, 2010, https://doi.org/10.1016/s0439-5689(14)70002-6
  15. Three-Dimensional Nonlinear Finite Element Modeling for Bond Performance of Ribbed Steel Bars in Concrete Under Lateral Tensions vol.18, pp.5, 2010, https://doi.org/10.1007/s40999-019-00488-1
  16. Composite Behavior of RC-HPFRC Tension Members under Service Loads vol.14, pp.1, 2010, https://doi.org/10.3390/ma14010047