DOI QR코드

DOI QR Code

Topographical Disorientation in Mild Cognitive Impairment: A Voxel-Based Morphometry Study

  • Lim, Tae-Sung (Department of Neurology, Ajou University School of Medicine) ;
  • Iaria, Giuseppe (Department of Psychology, University of Calgary) ;
  • Moon, So-Young (Department of Neurology, Ajou University School of Medicine)
  • Received : 2010.04.06
  • Accepted : 2010.08.09
  • Published : 2010.12.31

Abstract

Background and Purpose: To assess the neural substrates underlying topographical disorientation (TD) in patients affected by mild cognitive impairment (MCI), forty-one patients diagnosed with MCI and 24 healthy control individuals were recruited. Methods: TD was assessed clinically in all participants. Neurological and neuropsychological evaluations and a volumetric-head magnetic resonance imaging scan were performed in each participant. Voxel-based morphometry was used to compare patterns of gray-matter atrophy between patients with and without TD, and a group of normal controls. Results: We found TD in 17 out of the 41 MCI patients (41.4%). The functional abilities were significantly impaired in MCI patients with TD compared to in MCI patients without TD. Voxel-based morphometry analyses showed that the presence of TD in MCI patients is associated with loss of gray matter in the medial temporal regions, including the hippocampus and parahippocampal cortex, the fusiform gyrus, the inferior occipital gyrus, the amygdala, and the cerebellum. Conclusions: The findings found in this study represent the first evidence that the presence of TD in patients with MCI is associated with loss of gray matter in those brain regions that have been documented to be responsible for orientation in both neuropsychological and neuroimaging studies.

Keywords

References

  1. Renzi ED. Disorders of space exploration and cognition. Chichester: Wiley, 1982.
  2. Aguirre GK, D'Esposito M. Topographical disorientation: a synthesis and taxonomy. Brain 1999;122:1613-1628. https://doi.org/10.1093/brain/122.9.1613
  3. Habib M, Sirigu A. Pure topographical disorientation: a definition and anatomical basis. Cortex 1987;23:73-85. https://doi.org/10.1016/S0010-9452(87)80020-5
  4. Pallis CA. Impaired identification of faces and places with agnosia for colours; report of a case due to cerebral embolism. J Neurol Neurosurg Psychiatry 1955;18:218-224. https://doi.org/10.1136/jnnp.18.3.218
  5. Takahashi N, Kawamura M, Shiota J, Kasahata N, Hirayama K. Pure topographic disorientation due to right retrosplenial lesion. Neurology 1997;49:464-469. https://doi.org/10.1212/WNL.49.2.464
  6. Stark M. Impairment of an Egocentric Map of Locations: Implications for Perception and Action. Cogn Neuropsychol 1996;13:481-524. https://doi.org/10.1080/026432996381908
  7. Barrash J. A historical review of topographical disorientation and its neuroanatomical correlates. J Clin Exp Neuropsychol 1998;20:807-827. https://doi.org/10.1076/jcen.20.6.807.1114
  8. Huang C, Wahlund LO, Svensson L, Winblad B, Julin P. Cingulate cortex hypoperfusion predicts Alzheimer's disease in mild cognitive impairment. BMC Neurol 2002;2:9. https://doi.org/10.1186/1471-2377-2-9
  9. Trivedi MA, Wichmann AK, Torgerson BM, Ward MA, Schmitz TW, Ries ML, et al. Structural MRI discriminates individuals with Mild Cognitive Impairment from age-matched controls: a combined neuropsychological and voxel based morphometry study. Alzheimers Dement 2006;2:296-302. https://doi.org/10.1016/j.jalz.2006.06.001
  10. Seo SW, Im K, Lee JM, Kim YH, Kim ST, Kim SY, et al. Cortical thickness in single- versus multiple-domain amnestic mild cognitive impairimpairment. Neuroimage 2007;36:289-297. https://doi.org/10.1016/j.neuroimage.2007.02.042
  11. Desikan RS, Fischl B, Cabral HJ, Kemper TL, Guttmann CR, Blacker D, et al. MRI measures of temporoparietal regions show differential rates of atrophy during prodromal AD. Neurology 2008;71:819-825. https://doi.org/10.1212/01.wnl.0000320055.57329.34
  12. Whitwell JL, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, Petersen RC, et al. 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease. Brain 2007;130:1777-1786. https://doi.org/10.1093/brain/awm112
  13. Hort J, Laczo J, Vyhnálek M, Bojar M, Bures J, Vlcek K. Spatial navigation deficit in amnestic mild cognitive impairment. Proc Natl Acad Sci U S A 2007;104:4042-4047. https://doi.org/10.1073/pnas.0611314104
  14. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004;256:183-194. https://doi.org/10.1111/j.1365-2796.2004.01388.x
  15. Kang Y, Na D. Seoul Neuropsychological Screening Battery. Incheon: Human Brain Research and Consulting, 2003.
  16. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 1994;44:2308-2314. https://doi.org/10.1212/WNL.44.12.2308
  17. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 1993;43:2412-2414.
  18. Ku HM, Kim JH, Kwon EJ, Kim SH, Lee HS, Ko HJ, et al. A study on the reliability and validity of seoul-instrumental activities of daily living (S-IADL). J Korean Neuropsychiatr Assoc 2004;43:189-199.
  19. Pai MC, Jacobs WJ. Topographical disorientation in community-residing patients with Alzheimer's disease. Int J Geriatr Psychiatry 2004;19:250-255. https://doi.org/10.1002/gps.1081
  20. Kim H, Na D. Normative data on the Korean version of the Boston Naming Test. J Clin Exp Neuropsychol 1999;21:127-133. https://doi.org/10.1076/jcen.21.1.127.942
  21. Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage 2000;11:805-821. https://doi.org/10.1006/nimg.2000.0582
  22. Senjem ML, Gunter JL, Shiung MM, Petersen RC, Jack CR Jr. Comparison of different methodological implementations of voxel-based morphometry in neurodegenerative disease. Neuroimage 2005;26:600-608. https://doi.org/10.1016/j.neuroimage.2005.02.005
  23. Bozzali M, Filippi M, Magnani G, Cercignani M, Franceschi M, Schiatti E, et al. The contribution of voxel-based morphometry in staging patients with mild cognitive impairment. Neurology 2006;67:453-460. https://doi.org/10.1212/01.wnl.0000228243.56665.c2
  24. Rondi-Reig L, Burguiere E. Is the cerebellum ready for navigation? Prog Brain Res 2005;148:199-212. https://doi.org/10.1016/S0079-6123(04)48017-0
  25. Lee TM, Liu HL, Hung KN, Pu J, Ng YB, Mak AK, et al. The cerebellum's involvement in the judgment of spatial orientation: a functional magnetic resonance imaging study. Neuropsychologia 2005;43:1870-1877. https://doi.org/10.1016/j.neuropsychologia.2005.03.025
  26. Burguiere E, Arleo A, Hojjati M, Elgersma Y, De Zeeuw CI, Berthoz A, et al. Spatial navigation impairment in mice lacking cerebellar LTD: a motor adaptation deficit? Nat Neurosci 2005;8:1292-1294. https://doi.org/10.1038/nn1532
  27. Aguirre GK, Zarahn E, D'Esposito M. An area within human ventral cortex sensitive to "building" stimuli: evidence and implications. Neuron 1998;21:373-383. https://doi.org/10.1016/S0896-6273(00)80546-2
  28. Maguire EA. Hippocampal involvement in human topographical memory: evidence from functional imaging. Philos Trans R Soc Lond B Biol Sci 1997;352:1475-1480. https://doi.org/10.1098/rstb.1997.0134
  29. Iaria G, Chen JK, Guariglia C, Ptito A, Petrides M. Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. Eur J Neurosci 2007;25:890-899. https://doi.org/10.1111/j.1460-9568.2007.05371.x
  30. Iaria G, Lanyon LJ, Fox CJ, Giaschi D, Barton JJ. Navigational skills correlate with hippocampal fractional anisotropy in humans. Hippocampus 2008;18:335-339. https://doi.org/10.1002/hipo.20400
  31. Epstein RA, Parker WE, Feiler AM. Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J Neurosci 2007;27:6141-6149. https://doi.org/10.1523/JNEUROSCI.0799-07.2007
  32. Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, et al. Cellular networks underlying human spatial navigation. Nature 2003;425:184-188. https://doi.org/10.1038/nature01964
  33. Epstein R, Kanwisher N. A cortical representation of the local visual environment. Nature 1998;392:598-601. https://doi.org/10.1038/33402
  34. Gron G, Wunderlich AP, Spitzer M, Tomczak R, Riepe MW. Brain activation during human navigation: gender-different neural networks as substrate of performance. Nat Neurosci 2000;3:404-408. https://doi.org/10.1038/73980
  35. Zeki S. Cerebral akinetopsia (visual motion blindness). A review. Brain 1991;114:811-824. https://doi.org/10.1093/brain/114.2.811
  36. Jahn K, Deutschländer A, Stephan T, Strupp M, Wiesmann M, Brandt T. Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 2004;22:1722-1731. https://doi.org/10.1016/j.neuroimage.2004.05.017
  37. Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC. Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 2002;13:1939-1943. https://doi.org/10.1097/00001756-200210280-00022
  38. Karas GB, Scheltens P, Rombouts SA, Visser PJ, van Schijndel RA, Fox NC, et al. Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease. Neuroimage 2004;23:708-716. https://doi.org/10.1016/j.neuroimage.2004.07.006
  39. Pennanen C, Testa C, Laakso MP, Hallikainen M, Helkala EL, Hanninen T, et al. A voxel based morphometry study on mild cognitive impairment. J Neurol Neurosurg Psychiatry 2005;76:11-14. https://doi.org/10.1136/jnnp.2004.035600
  40. Bell-McGinty S, Lopez OL, Meltzer CC, Scanlon JM, Whyte EM, Dekosky ST, et al. Differential cortical atrophy in subgroups of mild cognitive impairment. Arch Neurol 2005;62:1393-1397. https://doi.org/10.1001/archneur.62.9.1393
  41. Fischer P, Jungwirth S, Zehetmayer S, Weissgram S, Hoenigschnabl S, Gelpi E, et al. Conversion from subtypes of mild cognitive impairment to Alzheimer dementia. Neurology 2007;68:288-291. https://doi.org/10.1212/01.wnl.0000252358.03285.9d
  42. Money J, Alexander D, Walker H. Astandardized road-map test of direction sense. Baltimore, MD: Johns Hopkins University Press, 1976.
  43. Hunt LA, Murphy CF, Carr D, Ducherk JM, Buckles V, Morris JC. Environmental cueing may effect performance on a road test for drivers with dementia of the Alzheimer type. Alzheimer Dis Assoc Disord 1997;11 Suppl 1:13-16.
  44. Nadolne MJ, Stringer AY. Ecologic validity in neuropsychological assessment: prediction of wayfinding. J Int Neuropsychol Soc 2001;7: 675-682. https://doi.org/10.1017/S1355617701766039

Cited by

  1. Reorientation Deficits Are Associated With Amnestic Mild Cognitive Impairment vol.27, pp.5, 2010, https://doi.org/10.1177/1533317512452035
  2. Sun Ginseng Protects Endothelial Progenitor Cells From Senescence Associated Apoptosis vol.36, pp.1, 2012, https://doi.org/10.5142/jgr.2012.36.1.78
  3. Accuracy and Reliability of Automated Gray Matter Segmentation Pathways on Real and Simulated Structural Magnetic Resonance Images of the Human Brain vol.7, pp.9, 2010, https://doi.org/10.1371/journal.pone.0045081
  4. Card-placing test in amnestic mild cognitive impairment and its neural correlates vol.14, pp.None, 2010, https://doi.org/10.1186/1471-2377-14-123
  5. Allocentric Spatial Memory Testing Predicts Conversion from Mild Cognitive Impairment to Dementia: An Initial Proof-of-Concept Study vol.7, pp.None, 2016, https://doi.org/10.3389/fneur.2016.00215
  6. Topographical disorientation in patients with brain impairment vol.117, pp.6, 2010, https://doi.org/10.17116/jnevro20171176244-52
  7. Cognitive Improvement and Brain Changes after Real-Time Functional MRI Neurofeedback Training in Healthy Elderly and Prodromal Alzheimer’s Disease vol.8, pp.None, 2010, https://doi.org/10.3389/fneur.2017.00384
  8. Topographical disorientation in aging. Familiarity with the environment does matter vol.39, pp.9, 2010, https://doi.org/10.1007/s10072-018-3464-5
  9. Topographical Disorientation in Patients with Brain Impairment vol.118, pp.6, 2018, https://doi.org/10.17116/jnevro20181180624
  10. Two new virtual reality tasks for the assessment of spatial orientation Preliminary results of tolerability, sense of presence and usability vol.12, pp.2, 2010, https://doi.org/10.1590/1980-57642018dn12-020013
  11. Unraveling Early Signs of Navigational Impairment in APPswe/PS1dE9 Mice Using Morris Water Maze vol.14, pp.None, 2010, https://doi.org/10.3389/fnins.2020.568200
  12. Memory for familiar locations: The impact of age, education and cognitive efficiency on two neuropsychological allocentric tasks vol.27, pp.7, 2010, https://doi.org/10.1177/1073191119831780
  13. Spatial orientation tasks show moderate to high accuracy for the diagnosis of mild cognitive impairment: a systematic literature review vol.78, pp.11, 2010, https://doi.org/10.1590/0004-282x20200043
  14. Disorientation in Time and Place in Old Age: Longitudinal Evidence from Three Old Age Cohorts in Germany (AgeDifferent.de Platform) vol.79, pp.4, 2010, https://doi.org/10.3233/jad-201008