DOI QR코드

DOI QR Code

High-brightness Phosphor-conversion White Light Source Using InGaN Blue Laser Diode

  • Received : 2010.07.12
  • Accepted : 2010.10.12
  • Published : 2010.12.25

Abstract

A phosphor-conversion white light source is demonstrated using an InGaN-based blue laser diode (LD) and a yellow-emitting phosphor excited by the blue LD. The photometric and colorimetric properties of this blue-LD-based white light source are characterized. When injection current of the LD is 100 mA, luminous flux and luminous efficiency of the white light are found to be over 5 lm and 10 lm/W, respectively. When injection current is >90 mA, luminance is estimated to be larger than 10 Mcd/$cm^2$. In addition, color characteristics of the white light such as chromaticity coordinates, a correlated color temperature, and a color rendering index are found to be quite stable as current and temperature of the LD varies. The demonstrated LD-based white light source is expected to be used in high-brightness illumination applications with good color stability.

Keywords

References

  1. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274-1278 (2005). https://doi.org/10.1126/science.1108712
  2. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power lightemitting diodes for solid-state lighting,” IEEE J. Display Technol. 3, 160-175 (2007). https://doi.org/10.1109/JDT.2007.895339
  3. G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Gotz, and F. Steranka, “Performance of high-power III-nitride light emitting diodes,” Phys. Status Solidi A 205, 1086-1092 (2008). https://doi.org/10.1002/pssa.200778747
  4. A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-power and high-efficiency InGaN-based light emitters,” IEEE Trans. Electron Devices 57, 79-87 (2010). https://doi.org/10.1109/TED.2009.2035538
  5. D. S. Ho, E. H. Kim, I. D. Hwang, K. Shin, J. T. Oh, and B. M. Kim, “Optical skin-fat measurement using miniaturized chip LEDs: a preliminary human study,” J. Opt. Soc. Korea 13, 304-309 (2009). https://doi.org/10.3807/JOSK.2009.13.3.304
  6. Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazaki, and T. Mukai, “Phosphor-conversion white light emitting diode using InGaN near-ultraviolet chip,” Jpn. J. Appl. Phys. 41, L371-L373 (2002). https://doi.org/10.1143/JJAP.41.L371
  7. Y. Xu, L. Chen, Y. Li, G. Song, and Y. Wang, “Phosphorconversion white light using InGaN ultraviolet laser diode,” Appl. Phys. Lett. 92, 021129 (2008). https://doi.org/10.1063/1.2835703
  8. T. Kozaki, S. Nagahama, and T. Mukai, “Recent progress of high-power GaN-based laser diodes,” Proc. SPIE 6485, 648503 (2007). https://doi.org/10.1117/12.714208
  9. H. Y. Ryu, K. H. Ha, S. N. Lee, T. Jang, J. K. Son, H. S. Paek, Y. J. Sung, H. K. Kim, K. S. Kim, O. H. Nam, Y. Park, and J. I. Shim, “High-performance blue InGaN laser diodes with single-quantum-well active layers,” IEEE Photon. Technol. Lett. 19, 1717-1719 (2007). https://doi.org/10.1109/LPT.2007.905215
  10. H. Y. Ryu, K. H. Ha, J. K. Son, S. N. Lee, H. S. Paek, T. Jang, Y. J. Sung, K. S. Kim, H. K. Kim, Y. Park, and O. H. Nam, “Determination of internal parameters in blue InGaN laser diodes by the measurement of cavity-length dependent characteristics,” Appl. Phys. Lett. 93, 011105 (2008). https://doi.org/10.1063/1.2956413
  11. D. W. Lim, H. U. Cho, H. K. Sung, J. C. Yi, and Y. M. Jhon, “A PSPICE circuit modeling of strained AlGaInN laser diode based on the multilevel rate equations,” J. Opt. Soc. Korea 13, 386-391 (2009). https://doi.org/10.3807/JOSK.2009.13.3.386
  12. Ocean Optics, Inc., http://www.oceanoptics.com/products/spectroradiometric.asp
  13. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91, 183507 (2007). https://doi.org/10.1063/1.2800290
  14. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91, 141101 (2007). https://doi.org/10.1063/1.2785135
  15. H. Y. Ryu, H. S. Kim, and J. I. Shim, “Rate equation analysis of efficiency droop in InGaN light-emitting diodes,” Appl. Phys. Lett. 95, 081114 (2009). https://doi.org/10.1063/1.3216578
  16. J. Hader, J. V. Moloney, and S. W. Koch, “Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 96, 221106 (2010). https://doi.org/10.1063/1.3446889
  17. A. Michiue, T. Miyoshi, T. Yanamoto, T. Kozaki, S. Nagahama, Y. Narukawa, M. Sano, T. Yamada, and T. Mukai, “Recent development of nitride LEDs and LDs,” Proc. SPIE 7216, 72161Z (2009).
  18. N. Ohta and A. Robertson, Colorimetry: Fundamentals and Applications (Wiley, Chichester, England, 2006), Chapter 1.

Cited by

  1. Performance Evaluation of Bidirectional Optical Amplifiers for Amplified Passive Optical Network Based on Broadband Light Source Seeded Optical Sources vol.15, pp.1, 2011, https://doi.org/10.3807/JOSK.2011.15.1.004
  2. Fabrication and Characterization of a GaN Light-emitting Diode (LED) with a Centered Island Cathode vol.16, pp.4, 2012, https://doi.org/10.3807/JOSK.2012.16.4.349
  3. Research on phosphor-conversion laser-based white light used as optical source of VLC and illumination vol.49, pp.4, 2017, https://doi.org/10.1007/s11082-017-1006-7
  4. High luminous flux from single crystal phosphor-converted laser-based white lighting system vol.24, pp.2, 2016, https://doi.org/10.1364/OE.24.00A215
  5. Preparation of balanced trichromatic white phosphors for solid-state white lighting vol.32, pp.5, 2017, https://doi.org/10.1002/bio.3253
  6. Laser-driven phosphor-converted white light source for solid-state illumination vol.55, pp.8, 2016, https://doi.org/10.1364/AO.55.001899
  7. Improvement of Color and Luminance Uniformity of the Edge-Lit Backlight Using the RGB LEDs vol.15, pp.3, 2011, https://doi.org/10.3807/JOSK.2011.15.3.272
  8. Effect of laser speckle on light from laser diode-pumped phosphor-converted light sources vol.56, pp.2, 2017, https://doi.org/10.1364/AO.56.000278
  9. Development of an Illumination Measurement Device for Color Distribution Based on a CIE 1931 XYZ Sensor vol.15, pp.1, 2011, https://doi.org/10.3807/JOSK.2011.15.1.044
  10. Thin Film Deposition of Tb3Al5O12:Ce by Pulsed Laser Ablation and Effects of Low-temperature Post-annealing vol.16, pp.1, 2012, https://doi.org/10.3807/JOSK.2012.16.1.076
  11. Efficiency and stability of a phosphor-conversion white light source using a blue laser diode vol.4, pp.10, 2014, https://doi.org/10.1063/1.4899187
  12. Optical Design of Multimedia-Embedded LED Dental Astral Lighting using the Reverse Dual Reflector Method vol.19, pp.4, 2015, https://doi.org/10.3807/JOSK.2015.19.4.409
  13. 2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system vol.23, pp.23, 2015, https://doi.org/10.1364/OE.23.029779
  14. Four-color laser white illuminant demonstrating high color-rendering quality vol.19, pp.S4, 2011, https://doi.org/10.1364/OE.19.00A982
  15. Efficient and stable laser-driven white lighting vol.3, pp.7, 2013, https://doi.org/10.1063/1.4813837
  16. Evaluation of Thermally Stable Phosphor Screens for Application in Laser Diode Excited High Brightness White Light Modules vol.5, pp.1, 2015, https://doi.org/10.1149/2.0021601jss
  17. Color Conversion Materials for High-Brightness Laser-Driven Solid-State Lighting pp.18638880, 2018, https://doi.org/10.1002/lpor.201800173
  18. Highly Uniform White Light-Based Visible Light Communication Using Red, Green, and Blue Laser Diodes vol.10, pp.2, 2018, https://doi.org/10.1109/JPHOT.2018.2802933