DOI QR코드

DOI QR Code

The Optical Design of Miniaturized Microscope Objective for CARS Imaging Catheter with Fiber Bundle

  • Received : 2010.08.03
  • Accepted : 2010.09.29
  • Published : 2010.12.25

Abstract

In coherent anti-Stokes Raman scattering (CARS) microscopy reported until now, conventional microscope objectives are used, so that they are limited for introduction into a living body. Gradient-index (GRIN) rod lenses might be a solution for miniaturized microscope objectives for in-vivo CARS microscopy. However, due to the inherent large amount of chromatic aberration, GRIN rod lenses cannot be utilized for this purpose. CARS imaging catheter, composed of miniaturized microscope objective and fiber bundle, can be introduced into a living body for minimally invasive diagnosis. In order to design the catheter, we have to first investigate design requirements. And then, the optical design is processed with design strategies and intensive computing power to achieve the design requirements. We report the miniaturized objective lens system with diffraction-limited performance and completely corrected chromatic aberrations for an in-vivo CARS imaging catheter.

Keywords

References

  1. W. Gobel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29, 2521-2523 (2004). https://doi.org/10.1364/OL.29.002521
  2. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28, 902-904 (2003). https://doi.org/10.1364/OL.28.000902
  3. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” Journal of Neurophysiology 91, 1908-1912 (2004). https://doi.org/10.1152/jn.01007.2003
  4. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using oneand two-photon fluorescence microendoscopy,” Journal of Neurophysiology 92, 3121-3133 (2004). https://doi.org/10.1152/jn.00234.2004
  5. P. Kim, M. Puoris’haag, D. Cote, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” Journal of Biomedical Optics 13, 010501 (2008). https://doi.org/10.1117/1.2839043
  6. S. J. Wallace, J. L. Morrison, K. J. Botting, and T. W. Kee, “Second-harmonic generation and two-photon-excited autofluorescence microscopy of cardiomyocytes: quantification of cell volume and myosin filaments,” Journal of Biomedical Optics 13, 064018 (2008). https://doi.org/10.1117/1.3027970
  7. H. Bao, A. Boussioutas, R. Jeremy, S. Russell, and M. Gu, “Second harmonic generation imaging via nonlinear endomicroscopy,” Opt. Express 18, 1255-1260 (2010). https://doi.org/10.1364/OE.18.001255
  8. Y. Sartenaer, L. Dreesen, C. Humbert, C. Volcke, G. Tourillon, P. Louette, P. A. Thiry, and A. Peremans, “Adsorption properties of decyl thiocyanate and decanethiol on platinum substrates studied by sum-frequency generation spectroscopy,” Surface Science 601, 1259-1264 (2007). https://doi.org/10.1016/j.susc.2006.12.066
  9. Y. Fu, H. Wang, R. Shi, and J. X. Cheng, “Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues,” Biophysical Journal 92, 3251-3259 (2007). https://doi.org/10.1529/biophysj.106.089011
  10. J. X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laserscanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophysical Journal 83, 502-509 (2002). https://doi.org/10.1016/S0006-3495(02)75186-2
  11. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Strokes Raman scattering microscopy,” Proceedings of the National Academy of Sciences of the United States of America 102, 16807-16812 (2005). https://doi.org/10.1073/pnas.0508282102
  12. Y. S. Yoo, D. H. Lee, and H. Cho, “Differential two-signal picosecond-pulse coherent anti-Stokes Raman scattering imaging microscopy by using a dual-mode optical parametric oscillator,” Opt. Lett. 32, 3254-3256 (2007). https://doi.org/10.1364/OL.32.003254
  13. J. X. Cheng, “Coherent anti-Stokes Raman scattering microscopy,” Applied Spectroscopy 61, 197A-208A (2007). https://doi.org/10.1366/000370207781746044
  14. G. Krauss, T. Hanke, A. Sell, D. Trautlein, A. Leitenstorfer, R. Selm, M. Winterhaider, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett. 34, 2847-2849 (2009). https://doi.org/10.1364/OL.34.002847
  15. J. P. R. Day, G. Rago, K. F. Domke, K. P. Velikov, and M. Bonn, “Label-free imaging of lipophilic bioactive molecules during lipid digestion by multiplex coherent anti-stokes raman scattering microspectroscopy,” Journal of the American Chemical Society 132, 8433-8439 (2010). https://doi.org/10.1021/ja102069d
  16. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 2, 941-950 (2005). https://doi.org/10.1038/nmeth820
  17. H. Wang, T. B. Huff, Y. Fu, K. Y. Jia, and J. X. Cheng, “Increasing the imaging depth of coherent anti-Stokes Raman scattering microscopy with a miniature microscope objective,” Opt. Lett. 32, 2212-2214 (2007). https://doi.org/10.1364/OL.32.002212
  18. R. L. Harzic, I. Riemann, M. Weinigel, K. König, and B. Messerschmidt, “Rigid and high-numerical-aperture two-photon fluorescence endoscope,” Appl. Opt. 48, 3396-3400 (2009). https://doi.org/10.1364/AO.48.003396
  19. A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901-1-023901-4 (2001). https://doi.org/10.1103/PhysRevLett.87.023901
  20. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” Journal of Physical Chemistry B 105, 1277-1280 (2001). https://doi.org/10.1021/jp003774a
  21. W. J. Smith, Modern Optical Engineering (MacGraw-Hill, NY, USA, 2001), Chapter 6, 10.
  22. K. Carlson, M. Chidley, K. B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injectionmolded plastic miniature objective lens,” Appl. Opt. 44, 1792-1797 (2005). https://doi.org/10.1364/AO.44.001792
  23. Optical Research Associates, Inc., “CODE V version 10.0,” http://www.opticalres.com.
  24. C. Liang, K. B. Sung, R. Richards-Kortum, and M. R. Descour, “Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope,” Appl. Opt. 41, 4603-4610 (2002). https://doi.org/10.1364/AO.41.004603
  25. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, UK, 1989), Chapter 9.

Cited by

  1. Optical Noise Removal in the Focal Plane of the Spaceborne Camera vol.15, pp.3, 2011, https://doi.org/10.3807/JOSK.2011.15.3.278
  2. Airborne Infrared Scanning Imaging System with Rotating Drum for Fire Detection vol.15, pp.4, 2011, https://doi.org/10.3807/JOSK.2011.15.4.340
  3. Non-imaging Optical Design of a Measurement Probe for LCD Display Used in a Color Analyzer vol.22, pp.5, 2011, https://doi.org/10.3807/KJOP.2011.22.5.239
  4. Achromatic miniature lens system for coherent Raman scattering microscopy vol.4, pp.10, 2013, https://doi.org/10.1364/BOE.4.002196
  5. Forming a Fresnel Zone Lens: Effects of Photoresist on Digital-micromirror-device Maskless Lithography with Grayscale Exposure vol.16, pp.2, 2012, https://doi.org/10.3807/JOSK.2012.16.2.127