DOI QR코드

DOI QR Code

Duality of Photonic Crystal Radiative Structures and Antenna Arrays

  • Bozorgi, Mahdieh (Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology) ;
  • Granpayeh, Nosrat (Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology)
  • Received : 2010.09.29
  • Accepted : 2010.11.08
  • Published : 2010.12.25

Abstract

In this paper, behaviors of photonic crystal (PC) radiative structures and antenna arrays have been compared for two types of uniform and binomial excitations. Appropriate duality has been shown between them. These results can be generalized to other types of excitation and arrangement of photonic crystal radiative arrays such as linear, planar and circular arrays of three dimensional (3D) photonic crystal termination resonators. Using these results in designing photonic circuits has some advantages for shaping a particular radiative beam at the photonic crystal exit, for instance reducing the divergence angle of the main lobe in order to enhance the directivity, for better coupling, or for splitting the emitted beam, for dividing the output beam to the next devices in photonic integrated circuits (PIC). For analysis and simulation of the photonic crystal structures, the finite difference time domain (FDTD) method has been employed.

Keywords

References

  1. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163-182 (1944). https://doi.org/10.1103/PhysRev.66.163
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). https://doi.org/10.1103/PhysRevLett.58.2059
  3. S. John, “Strong localization of photonics in certain disordered dielectric super-lattices,” Phys. Rev. Lett. 58, 2486-2489 (1987). https://doi.org/10.1103/PhysRevLett.58.2486
  4. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999). https://doi.org/10.1126/science.284.5421.1819
  5. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997). https://doi.org/10.1038/386143a0
  6. K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structure in face-centered-cubic dielectric media,” Phys. Rev. Lett. 65, 2646-2649 (1990). https://doi.org/10.1103/PhysRevLett.65.2646
  7. G. Guida, A. Delustrac, and A. Priou, “An introduction to photonic band-gap (PBG) materials,” PIER 41, 1-20 (2003). https://doi.org/10.2528/PIER02010801
  8. Z.-H. Zho, W.-M. Ye, J.-R. Ji, X.-D. Yuan, and C. Zen, “Enhanced transmission and directional emission via coupled resonator optical waveguides,” Appl. Phys. B 86, 327-331 (2007). https://doi.org/10.1007/s00340-006-2457-x
  9. L. Pajewski, L. Rinaldi, and G. Schettini, “Enhancement of directivity using 2D electromagnetic crystals near the band-gap edge: a full-wave approach,” PIER 80, 179-196 (2008). https://doi.org/10.2528/PIER07111504
  10. W. Y. Liang, J. W. Dong, and H. Z. Wang, “Directional emitter and beam splitter based on self collimation effect,” Opt. Express 15, 1234-1239 (2007). https://doi.org/10.1364/OE.15.001234
  11. H. Kurt, “Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exits,” IEEE Photonics Technol. Lett. 20, 1682-1684 (2008). https://doi.org/10.1109/LPT.2008.2003403
  12. K. B. Chung, “Properties of surface modes used for directional emission from photonic crystal waveguides,” J. Opt. Soc. Korea 12, 7-12 (2008). https://doi.org/10.3807/JOSK.2008.12.1.007
  13. K. B. Chung, “Effects of surface termination on directional emission from photonic crystal waveguides,” J. Opt. Soc. Korea 12, 13-18 (2008). https://doi.org/10.3807/JOSK.2008.12.1.013
  14. S. Kim, Y. Lim, J. Park, and B. Lee, “Bundle beaming from multiple subwavelength slits surrounded by dielectric surface gratings,” IEEE J. Lightwave Technol. 28, 2023-2029 (2010). https://doi.org/10.1109/JLT.2010.2051415
  15. B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. in Quantum Electron. 34, 47-87 (2010). https://doi.org/10.1016/j.pquantelec.2009.08.002
  16. H. Kim, J. Park, and B. Lee, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett. 34, 2569-2571 (2009). https://doi.org/10.1364/OL.34.002569
  17. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007). https://doi.org/10.1063/1.2437730
  18. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghar, “Highly directional emission from photonic crystal waveguides of sub-wavelength width,” Phys. Rev. Lett. 92, 113903 (2004). https://doi.org/10.1103/PhysRevLett.92.113903
  19. E. Moreno, F. J. Garcia, and L. Martin-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402-121404 (2004). https://doi.org/10.1103/PhysRevB.69.121402
  20. S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005). https://doi.org/10.1063/1.1870133
  21. I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078-3080 (2005). https://doi.org/10.1364/OL.30.003078
  22. C. C. Chen, T. Pertsch, R. Iliev, F. Lederer, and A. Tunnermann, “Directional emission from photonic crystal waveguides,” Opt. Express 14, 2423-2428 (2006). https://doi.org/10.1364/OE.14.002423
  23. K. Guven and E. Ozbay, “Directivity enhancement and deflection of the beam emitted from a photonic crystal waveguide via defect coupling,” Opt. Express 15, 14973-14978 (2007). https://doi.org/10.1364/OE.15.014973
  24. Y. Zhang, Y. Zhang, and B. Li, “Highly efficient directional emission from photonic crystal waveguides for coupling of freely propagated terahertz waves into Si slab waveguides,” Opt. Express 15, 9281-9286 (2007). https://doi.org/10.1364/OE.15.009281
  25. Z. Li, K. Aydin, and E. Ozbay, “Highly directional emission for photonic crystals with a wide bandwidth,” Appl. Phys. Lett. 91, 121105 (2007). https://doi.org/10.1063/1.2786590
  26. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999). https://doi.org/10.1364/OL.24.000711
  27. S. Oliver, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdre, and U. Oesterle, “Mini-band transmission in a photonic crystal coupled resonator optical waveguide,” Opt. Lett. 26, 1019-1021 (2001). https://doi.org/10.1364/OL.26.001019
  28. M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight binding description of the coupled defect modes in three dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140-2143 (2000). https://doi.org/10.1103/PhysRevLett.84.2140
  29. T. D. Happ, M. Kamp, A. Forchel, J. Gentner, and L. Goldstein, “Two dimensional photonic crystal coupled defect laser diode,” Appl. Phys. Lett. 82, 4-6 (2003). https://doi.org/10.1063/1.1527703
  30. F. Ares, G. Franceschetti, and J. A. Rodriguez, “A simple alternative for beam reconfiguration of array antennas,” PIER 88, 227-240 (2008). https://doi.org/10.2528/PIER08110303
  31. H. J. Zhou, B. H. Sun, J. F. Li, and Q. Z. Lin, “Efficient optimization and realization of a shaped beam planar array for very large array application,” PIER 86, 1-10 (2009). https://doi.org/10.2528/PIER08090501
  32. S. W. Yang, Y. K. Chen, and Z. P. Nie, “Simulation of time modulated linear antenna arrays using the FDTD method,” PIER 98, 175-190 (2009). https://doi.org/10.2528/PIER09092507
  33. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, New Jersey, USA, 2005).
  34. E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems (Prentice-Hall, New Jersey, USA, 1968).

Cited by

  1. Fabrication of Large Area Photonic Crystals with Periodic Defects by One-Step Holographic Lithography vol.19, pp.1, 2015, https://doi.org/10.3807/JOSK.2015.19.1.063
  2. A novel reliable optimization method for output beam forming of photonic crystal waveguide terminated with surface CROW vol.126, pp.4, 2015, https://doi.org/10.1016/j.ijleo.2014.10.002
  3. Directional Emission from Photonic Crystal Waveguide Output by Terminating with CROW and Employing the PSO Algorithm vol.15, pp.2, 2011, https://doi.org/10.3807/JOSK.2011.15.2.187
  4. Research on the Solar Concentrating Optical System for Solar Energy Utilization vol.17, pp.5, 2013, https://doi.org/10.3807/JOSK.2013.17.5.371