Nitrogen Storage Potential in Aboveground Biomass of Three-year-old Poplar Clones in a Riparian Area

하천연변에 식재된 3년생 포플러 클론의 지상부 biomass의 질소 저장능력 추정추정

  • Yeo, Jin-Kie (Dept. of Forest Res. Develop., Korea Forest Research Institute) ;
  • Lee, Won-Woo (Dept. of Forest Res. Develop., Korea Forest Research Institute) ;
  • Koo, Yeong-Bon (Dept. of Forest Res. Develop., Korea Forest Research Institute) ;
  • Woo, Kwan-Soo (Dept. of Forest Res. Develop., Korea Forest Research Institute) ;
  • Byun, Jae-Kyung (Dept. of Forest Conservation, Korea Forest Research Institute)
  • 여진기 (국립산림과학원 산림자원육성부) ;
  • 이원우 (국립산림과학원 산림자원육성부) ;
  • 구영본 (국립산림과학원 산림자원육성부) ;
  • 우관수 (국립산림과학원 산림자원육성부) ;
  • 변재경 (국립산림과학원 산림환경부)
  • Received : 2010.03.31
  • Accepted : 2010.06.15
  • Published : 2010.06.30

Abstract

We estimated the biomass productivity and the storage potential of nitrogen, the major contributor of non-point source pollution, with four three-year-old four poplar clones in a riparian woody buffer established in the Anseong River in Anseong, Korea. Stem of Populus alba ${\times}$ P. glandulosa clone 72-31 and Populus deltoides ${\times}$ P. nigra clone Dorskamp showed the highest percentage of aboveground biomass components, followed by branch and leaf. Nitrogen content in aboveground biomass components of two poplar clones was the highest in leaf and the lowest in stem. Nitrogen content in leaf and branch of clone 72-31 was higher than that of clone Dorskamp, while it in stem was lower. Populus deltoides clone Ay48 showed the highest above-ground biomass productivity, which was estimated as $37.5ton\;ha^{-1}$ at age 3. However, clone 72-31 was the lowest in above-ground biomass productivity. Nitrogen storage potential in aboveground biomass of 3-year-old poplar clones was high in order of aboveground biomass. Clone Ay48 showed the highest nitrogen storage potential in aboveground biomass, which was estimated as $218.3kg\;ha^{-1}$ at age 3.

수변완충림으로 조성된 3년생 포플러 4클론에 대하여 biomass 생산능력과 주요 비점오염원 중 하나인 질소의 저장능력을 조사하였다. 현사시 72-31 및 미루나무 교잡종 Dorskamp 클론의 지상부 biomass 구성 비율은 줄기, 가지, 잎의 순으로 높았으며, 잎과 가지의 비율은 두 클론간에 차이를 보였다. 지상부 biomass의 질소 함량은 잎, 가지, 줄기의 순으로 높았고 72-31 클론의 잎과 가지의 질 소함량은 Dorskamp에 비해 높았으나 줄기의 질소 함량은 낮게 나타났다. 3년생 Ay48 클론의 지상부 biomass 추정량은 $37.5ton{\cdot}ha^{-1}$ 로 가장 높았으며, 72-31 클론이 가장 낮았다. 3년생 포플러 클론의 지상부 biomass의 질소 저장능력은 biomass 생산량의 순위와 일치하였다. 지상부 biomass 생산능력이 가장 우수한 3년생 Ay48 클론은 $218.3kg{\cdot}ha^{-1}$의 질소를 지상부 biomass에 저장할 수 있는 것으로 추정되었다.

Keywords

References

  1. Baskerville, G. L. 1972. Use of logarithmic regression in the estimation of plant biomass. Can. J. For. Res. 2: 49-53. https://doi.org/10.1139/x72-009
  2. Dix, M. E., N. B. Klopfenstein, J.-W. Zhang, S. W. Workman, and M. S. Kim. 1997. Potential use of Populus for phytoremediation of environmental pollution in riparian zones. USDA Forest Service Gen. Tech. Rep. RM-GTR: 297.
  3. Ebbs, S. D., M. N. Lasat, D. J. Brady, J. Cornish, R. Gorden, and L. V. Kochian. 1997. Phytoextraction of cadmium and zinc from a contaminated soil. J. of Environm. Qual. 26: 1424-1430.
  4. Galloway, J. N., W. H. Schlesinger, H. Levy, II, A. Michaels, and J. L. Schnoor. 1995. Nitrogen fixation: anthropogenic enhancement-environmental response. Global Biogeochem. Cycles 9: 235-252. https://doi.org/10.1029/95GB00158
  5. Hall, J. P. 2002. Sustainable production of forest biomass for energy. The Forestry Chronicle 78: 391-396.
  6. Heilman, P. E. and R. F. Stettler. 1985. Genetic variation and productivity of Populus trichocarpa and its hybrids. Part II. Biomass production in a 4-year plantation. Can. J. For. Res. 15: 384-388. https://doi.org/10.1139/x85-061
  7. Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A. Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, and Z. Zhao-Liang. 1996. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochem. 35: 75-139. https://doi.org/10.1007/BF02179825
  8. Isebrands, J. G. and D. F. Karnosky. 2001. Environmental benefits of poplar culture. In: Dickmann, D.I., Isebrands, J.G., Eckenwalder, J.E., Richardson, J. editors. Poplar Culture in North America. Ottawa, Ontario, Canada: NRC Research Press: 207-218.
  9. Isenhart, T. M., R. C. Schultz, and J. P. Colletti. 1997. Watershed restoration and agricultural practices in the midwest: Bear Creek in Iowa. Chapter 15. In: Williams, J.E., M.P. Dombeck and C.A. Wood(eds), Watershed Restoration: Principles and Practices. American Fisheries Society.
  10. Koo, Y. B., R. E. Noh, S. K. Lee, and C. S. Kim. 1992. Selection of superior hybrid poplar clones for above-ground biomass production. Res. Rep. For. Gen. Res. Inst. 28: 90-95.
  11. Labrecque, M. and T. I. Teodorescu. 2003. High biomass yield achieved by Salix clones in SRIC following two 3-year coppice rotations on abandoned farmland in southern Quebec, Canada. Biomass and Bioenergy 25: 135-146.
  12. Lowrance, R. R., R. L. Todd, J. Fail, Jr., O. Hendrickson, Jr., R. Leonent, and L. Asmussen. 1984. Riparian forests as nutrient filters in agricultural watersheds: I. Phreatic movement. J. of Environm. Qual. 13: 22-27.
  13. Lowrance, R. 1992. Groundwater nitrate and denitrification in a coastal plain riparian forest. J. of Environm. Qual. 21: 401-405.
  14. Lowrance, R., G. Vellidis, R. D. Wauchope, P. Gay, and D. D. Bosch. 1997a. Herbicide transport in a managed riparian forest buffer system. Trans. Am. Soc. Agric. Eng. 40: 1047-1057.
  15. Lowrance, R., L. S. Altier, J. D. Newbold, R. R. Schnabel, P. M. Groffman, J. M. Denver, D. L. Correll, J. W. Gillian, J. L. Robinson, R. S. Brinsfield, K. W. Staver, W. Lucas, and A. H. Todd. 1997b. Water quality funtions of riparian forest buffer systems in Chesapeake Bay watersheds. Environm. Manage. 21: 687-712. https://doi.org/10.1007/s002679900060
  16. Peterjohn, W. T. and D. L. Correll. 1984. Nutrient dynamics in an agricultural watershed: Observation on the role of a riparian forest. ASAE 32:513519. Ecol. 65: 1466-1475. https://doi.org/10.2307/1939127
  17. SAS Institute Inc. 1996. SAS/STAT User's guide, Version 6.12. USA.
  18. Schultz, R. C., T. M. Isenhart, W. W. Simpkins, and J. P. Colletti. 2004. Riparian forest buffers in agroecosystems-lessons learned from the Bear Creek Watershed, central Iowa, USA. Agroforestry Systems 61: 35-50. https://doi.org/10.1023/B:AGFO.0000028988.67721.4d
  19. Snowdon, P., H. Keith, P. Ritson, P. Grierson, M. Adams, K. Montagu, H. Bi, W. Burrows, and D. Eamus. 2002. Protocol for sampling tree and stand biomass. National Carbon Accounting Syatem Technical Report 31. Australian Greenhouse Office, Canberra. 66pp.
  20. Stanton, B., J. Eaton, J. Johnson, D. Rice, B. Schuette, and B. Moser. 2002. Hybrid poplar in the Pacific Northwest: the effects of market-driven management. J. of Forestry 100: 28-33.
  21. US EPA. 1995. Ecological restoration: a tool to manage stream quality. Office of Water, US Environmental Protection Agency, Washington, DC, EPA 841-F-95-007.
  22. Volk, T. A., B. D. Kiernan, R. F. Kopp, and L. P. Abrahamson. 2001. First- and second- rotation yields of willow clones at two sites in New York State. In: Proceedings of the Fifth Biomass Conference of the Americas. Orlando, FL.
  23. Walsh, M. E., D. de la Torre Ugarte, S. Slinsky, R. L. Graham, H. Shapouri, and D. Ray. 1998. Economic Analysis of Energy Crop Production in the U.S.-Location, Quantities, Price and Impacts on the Traditional Agricultural Crops. In proceedings of conference, Bioenergy 98: Expanding Bionergy Partnerships 2: 1302-1310. Madison, WI, October 4-8.
  24. Welsch, D. J. 1991. Riparian Forest Buffers: Function and Design for Protection and Enhancement of Water Resources. NA-PR-07-91. USDA Forest Service, Randor, Pennsylvania.
  25. Westphal. L. M. and J. G. Isebrands. 2001. Phytoremediation of Chicago's brownfields-consideration of ecological approaches and social issues. Proceedings Brownfields 2001 Conference, Chicago, Il, USA BB-11-02.
  26. Westphal, L. M. and J. G. Isebrands. 2001. Phytoremediation of Chicago's brownfields-consideration of ecological approaches and social issues. Proceedings Brownfields 2001 Conference, Chicago, IL, USA BB-11-02.
  27. Whittaker, R. H., G. E. Likens, F. H. Bormann, J. S. Eaton, and T. G. Siccama. 1979. The Hubbard Brook ecosystem study: forest nutrient cycling and element behavior. Ecol. 60: 203-220. https://doi.org/10.2307/1936481
  28. Whittaker, R. H., F. H. Bormann, G. E. Likens, and T. G. Siccama. 1974. The Hubbard Brook ecosystem study: forest biomass and production. Ecol. Monog. 44: 233-254. https://doi.org/10.2307/1942313
  29. Woodwell, G. M., R. H. Whittaker, and R. A. Houghton. 1975 Nutrient concentrations in plants in the Brookhaven oak-pine forest. Ecol. 56: 318-332. https://doi.org/10.2307/1934963
  30. Yeo, J. K. 2002. Use of poplars for elimination of livestock waste water, salt and lead. Graduate School, Kyungpook National University. Ph. D. Thesis 107pp.
  31. Yeo, J. K., I. S. Kim, Y. B. Koo, Y. J. Kim, and S. H. Joo. 2003. Growth and absorption of livestock waste water of poplar species at test plantation. J. Korea Society of Waste Management. 20: 742-749.
  32. Yeo, J. K., S. Woo, Y. B. Koo, and Y. S. Kim. 2007. Growth performance and adaptability of Three-year-old poplar and willow clones in a riparian area. J. Korean. Res. & Reverg. Tech. 105: 40-50
  33. 김종구, 이덕배, 강종국, 이종식, 소재돈, 이경수. 1994. 생활하수 관개가 벼 생육, 토양화학성 및 수질변화에 미치는 영향. 농업논문집 36: 253-258.