DOI QR코드

DOI QR Code

Annealing Characteristics of Oxygen Free Copper Sheet Processed by Differential Speed Rolling

이주속압연된 무산소동 판재의 어닐링 특성

  • Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University,) ;
  • Yoon, Dae-Jin (Department of Advanced Materials Science and Engineering, Mokpo National University,) ;
  • Euh, Kwangjun (Structural Materials Division, Korea Institute of Materials Science) ;
  • Kim, Su-Hyun (Structural Materials Division, Korea Institute of Materials Science) ;
  • Han, Seung-Zeon (Structural Materials Division, Korea Institute of Materials Science)
  • 이성희 (국립목포대학교 신소재공학과) ;
  • 윤대진 (국립목포대학교 신소재공학과) ;
  • 어광준 (재료연구소 구조재료연구본부) ;
  • 김수현 (재료연구소 구조재료연구본부) ;
  • 한승전 (재료연구소 구조재료연구본부)
  • Received : 2009.08.10
  • Published : 2010.01.20

Abstract

Annealing characteristics of an oxygen free copper (OFC) processed by differential speed rolling (DSR) were investigated in detail. An OFC sample with a thickness of hum was rolled to 35% reduction at ambient temperature without lubrication, varying the differential speed ratio from 1.0:1 to 2.2:1, and then annealed for 0.5h at various temperatures from 100 to $400^{\circ}C$. Different recrystallization behavior was observed depending on the differential speed ratio, especially in the case of annealing at $200^{\circ}C$ Complete recrystallization occurred in the specimens annealed at temperatures above $250^{\circ}C$ regardless of the differential ratios. The hardness distribution in the thickness direction of the rolled OFC sheets varied depending on the differential speed ratios. These annealing characteristics were explained by the magnitude of shear strain introduced during rolling.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. T. Kamijo, S. Shinya, and H. Hukutomi, J. Jap. Soc. Tech. Plast. 25, 375 (1984)
  2. T. Hirohata, S. Masaki, and S. Shima, J. Mater. Proc. Tech. 111, 113 (2001) https://doi.org/10.1016/S0924-0136(01)00492-7
  3. Q, Cui and K. Ohori, Mater. Sci. Tech. 16, 1095 (2000)
  4. K.-H. Kim and D. N. Lee, Acta Mater. 49, 2583 (2001) https://doi.org/10.1016/S1359-6454(01)00036-2
  5. S. H. Lee, and D. N. Lee, J. Mech. Sci. 43, 1997 (2001) https://doi.org/10.1016/S0020-7403(01)00025-X
  6. T. Sakai, S. Hamada, and Y. Saito, Scr. Mater. 44, 2569 (2001) https://doi.org/10.1016/S1359-6462(01)00932-0
  7. T. Sakai, K. Yoneda, and Y. Saito, Mate. Sci. Forum 396-402, 309 (2002) https://doi.org/10.4028/www.scientific.net/MSF.396-402.309
  8. K. Koyama and T. Komatsubara, KTNZOKU Mater. Sci. Tech. 78, 29 (2008)
  9. W. J. Kim, J. D. Park, and W. Y. Kim, J. Alloys and Compounds 460, 289 (2008) https://doi.org/10.1016/j.jallcom.2007.06.050
  10. S. H. Lee, T. Sakai, and D. H. Shin, Mater. Trans. 44, 1382 (2003) https://doi.org/10.2320/matertrans.44.1382
  11. Y. H. Ji and J. J. Park, Mater. Sci. Eng. 449A, 14 (2009)
  12. J. Watanabe, T. Sakai, N. Iwamoto, and H. Utsunomiya, J. JRICu 44, 73 (2005)
  13. S. H. Lee, D. J. Yoon, T. Sakai, S. H. Kim, and S. Z. Han, J. Kor. Inst. Met. & Mater. 47, 121 (2009)
  14. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., p.221-222, Elsevier Ltd., Oxford (2004)