DOI QR코드

DOI QR Code

A Reduction Process of Palladium Oxide Thin Films and Hydrogen Gas Sensing Properties of Reduced Palladium Thin Films

PdO 박막의 환원과 환원된 Pd박막의 수소 감지 특성

  • Lee, Young Tack (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Yeon Ju (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Jun Min (Department of Materials Science and Engineering, Yonsei University) ;
  • Joe, Jin Hyoun (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Wooyoung (Department of Materials Science and Engineering, Yonsei University)
  • 이영택 (연세대학교 신소재공학과) ;
  • 김연주 (연세대학교 신소재공학과) ;
  • 이준민 (연세대학교 신소재공학과) ;
  • 조진현 (연세대학교 신소재공학과) ;
  • 이우영 (연세대학교 신소재공학과)
  • Received : 2009.11.16
  • Published : 2010.04.15

Abstract

This study reports a novel method off abricating highly sensitive hydrogen gas sensors based on PdO thin films. The PdO thin films with a thickness of 40 nm were deposited on Si substrates under Ar and $O_2$ ambient conditions using a reactive de magnetron sputtering system. Considerable changes in the resistance of the palladium oxide thin films were observed when they were initially exposed to hydrogen gas, as a result of the reduction process. The sensitivity of the PdO thin films was found to be as high as 90%. After the thin films were exposed to hydrogen gas, the nano-sized cracks were discovered to have formed on the surface of the PdO thin films. These types of nano-cracks that formed on the deoxidized PdO thin films are known to play a key role incausing a four-fold reduction of the response time of the absorption process. The results of this study demonstrate that deoxidized PdO thin films can be applied for use in the creation of high-sensitivity hydrogen sensors.

Keywords

Acknowledgement

Supported by : 국방과학연구소,한국연구재단,과학재단,서울시

References

  1. M. Z. Jacobson, W. G. Colella, and D. M. Golden, Science 308, 1901 (2005) https://doi.org/10.1126/science.1109157
  2. J. L. Kevin, A. Z. Isaac, L. C. Kenneth, M. D. Sinisa, and A. L. Cindy, J. Loss Prevo Process Ind. 13, 377 (2000) https://doi.org/10.1016/S0950-4230(99)00034-0
  3. M. H. Yun, N. V. Myung, R. P. Vasquez, C. Lee, E. Menke, and R. M. Penner, Nano Lett. 4, 419 (2004) https://doi.org/10.1021/nl035069u
  4. Y H. Im, C. Lee, R. P. Vasquez, M. A. Bangar, N. V. Myung, E. J. Menke, R. M. Penner, and M. H. Yun, Small. 2, 356 (2006) https://doi.org/10.1002/smll.200500365
  5. F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, Science 293, 2227 (2001) https://doi.org/10.1126/science.1063189
  6. M. Z. Atashbar and S. Singamaneni, Sensors Actuators B. 111/112, 13 (2005) https://doi.org/10.1016/j.snb.2005.07.034
  7. J. Kong, M. G. Chapline, and H. Dai, Adv. Mater. 13, 1384 (2001) https://doi.org/10.1002/1521-4095(200109)13:18<1384::AID-ADMA1384>3.0.CO;2-8
  8. Y Sun and H. H. Wang, Appl. Phys. Lett. 90, 213107 (2007) https://doi.org/10.1063/1.2742596
  9. J. C. Barton, F. A. Lewis, and I. Wwdwar, Bull. Mater. Sci. 22, 999 (1999) https://doi.org/10.1007/BF02745693
  10. T. B. Flanagan and W. A. Oates, Science 21, 269 (1991)
  11. G. A. Fraziera and R. Glosser, J. Less-Common Metal. 74, 89 (1980) https://doi.org/10.1016/0022-5088(80)90077-6
  12. E. Wicke and G. H. Nemst, Ber. Bunsenges Physik Chem. 68, 224 (1964) https://doi.org/10.1002/bbpc.19640680303
  13. F. A. Lewis, The Palladium Hydrogen System (London: Academic), (1967)
  14. M. Y Song, D. S. Ahn, I. H. Kwon, and H. J. Ahn, Met. & Mater. 5, 485 (1999) https://doi.org/10.1007/BF03026163
  15. Y Sakamoto, K. Takai, I. Takashima, and M. Imada, J. Phys.; Condens. Matter. 8, 3399 (1996) https://doi.org/10.1088/0953-8984/8/19/015
  16. A. L. Cabrera and R. Aguayo-Soto, Catal. Lett. 45, 79 (1997) https://doi.org/10.1023/A:1019078419537
  17. Y Okuhara, Y Imai, Y Noguchi, and M. Takata, Bull. Mater. Sci. 22, 999 (1999) https://doi.org/10.1007/BF02745693
  18. T. Arai, T. Shima, T. Nakano, and J. Tominaga, Thin Solid Films 515, 4774 (2007) https://doi.org/10.1016/j.tsf.2006.11.040
  19. G. Ketteler, D. F. Ogletree, H. Bluhm, H. Liu, E. L. D. Hebenstreit, and M. Salmeron, J. Am. Chern. Soc. 127, 18269 (2005) https://doi.org/10.1021/ja055754y
  20. V. A. Karagounis, C. C. Liu, M. R. Neuman, L. T. Romankiw, P. A. Leary, and J. 1. Cuomo, IEEE Trans. Biomed. Eng. BME 33, 113 (1986) https://doi.org/10.1109/TBME.1986.325885
  21. S. C. Su, J. N. Carstens, and A. T. Bell, J. Catal. 176, 125 (1998) https://doi.org/10.1006/jcat.1998.2028
  22. M. W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, Acta. Mater. 52, 3151 (2004) https://doi.org/10.1016/j.actamat.2004.03.014
  23. K. J. Jeon, M. H. Jeun, E. Lee, J. M. Lee, K. J. Lee, P. V. Allmen, and W. Lee, Nanotechnology 19, 495501 (2008) https://doi.org/10.1088/0957-4484/19/49/495501
  24. K. J. Jeon, J. M. Lee, E. Lee, and W. Lee, Nanotechnology 20, 135502 (2009) https://doi.org/10.1088/0957-4484/20/13/135502
  25. Y Sun, H. H. Wang, and M. Xia . J. Phys. Chern. C. 112, 1250 (2008) https://doi.org/10.1021/jp076965n
  26. E. Lee, J. M. Lee, K. J. Jeon, and W. Lee, J. Kor. Inst. Met. & Mater. 47, 372 (2009)