DOI QR코드

DOI QR Code

Thermal Conductivity in Individual Single-Crystalline PbTe Nanowires

단결정 PbTe 단일 나노선의 열전도도

  • Roh, Jong Wook (Department of Materials Science and Engineering, Yonsei University) ;
  • Jang, So Young (Department of Chemistry, Korea University) ;
  • Kang, Joohoon (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Seunghyun (Department of Materials Science and Engineering, Yonsei University) ;
  • Noh, Jin-Seo (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Jeunghee (Department of Chemistry, Korea University) ;
  • Lee, Wooyoung (Department of Materials Science and Engineering, Yonsei University)
  • 노종욱 (연세대학교 신소재공학과) ;
  • 장소영 (고려대학교 신소재화학과) ;
  • 강주훈 (연세대학교 신소재공학과) ;
  • 이승현 (연세대학교 신소재공학과) ;
  • 노진서 (연세대학교 신소재공학과) ;
  • 박정희 (고려대학교 신소재화학과) ;
  • 이우영 (연세대학교 신소재공학과)
  • Received : 2009.11.16
  • Published : 2010.02.20

Abstract

We investigated the thermal conductivity of individual single-crystalline PbTe nanowires grown by chemical vapor transport method. Suspended MEMS was utilized to precisely measure the thermal conductivity of an individual nanowire. The thermal conductivity of a PbTe nanowire with diameter of 292 nm was measured to be $1.8W/m{\cdot}K$ at 300 K, which is about two thirds of that of bulk PbTe. This result indicates that the thermal conduction through a PbTe nanowire is effectively suppressed by the enhanced phonon boundary scattering. As the diameter of a PbTe nanowire decreases, the corresponding thermal conductivity linearly decreases.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 45, 16631 (1993)
  2. M. Kim, K. Park, and T. Oh, J. Kor. Inst. Met. & Mater 47, 248 (2009)
  3. D. Lee, S. Misture, H. Kwon, Y. Kwon, S. Park, and J. C. Lee, J. Korean Phys. Soc. 54, 1119 (2009) https://doi.org/10.3938/jkps.54.1119
  4. J. Zhou, C. Jin, J. H. Seol, X. Li, and L. Shi, Appl. Phys. Lett. 87, 133109 (2005) https://doi.org/10.1063/1.2058217
  5. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003) https://doi.org/10.1063/1.1616981
  6. D. Li, Y. Wu, R. Fan, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 3186 (2003) https://doi.org/10.1063/1.1619221
  7. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008). https://doi.org/10.1038/nature06381
  8. T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Science 297, 2229 (2002) https://doi.org/10.1126/science.1072886
  9. M. Fardy, A. I. Hochbaum, J. Goldberger, M. M. Zhang, and P. Yang, Adv. Mater 19, 9047 (2007)
  10. S. Y. Jang, H. S. Kim, J. Park, M. Jung, J. Kim, S. H. Lee, J. W. Roh, and W. Lee, Nanotechnology 20, 415204 (2009) https://doi.org/10.1088/0957-4484/20/41/415204
  11. L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar, J. Heat Transfer 125, 881 (2003) https://doi.org/10.1115/1.1597619
  12. J. R. Sootsman, R. J. Pcionek, H. Kong, C. Uher, and M. G. Kanatzidis, Chem. Mater. 18, 4993 (2006) https://doi.org/10.1021/cm0612090
  13. D. Greig, Phys. Rev. 120, 358 (1960) https://doi.org/10.1103/PhysRev.120.358
  14. D. Abouelaoualim, Acta. Phys. Pol. A 112, 49 (2007) https://doi.org/10.12693/APhysPolA.112.49