DOI QR코드

DOI QR Code

Formation Mechanism of SnO Plate

판상 SnO의 형성 메커니즘

  • Kim, Byeung Ryeul (Department of Metallurgical Engineering, Dong-A University) ;
  • Park, Chae Min (Department of Metallurgical Engineering, Dong-A University) ;
  • Lee, Woo Jin (Department of Metallurgical Engineering, Dong-A University) ;
  • Kim, Insoo (Department of Metallurgical Engineering, Dong-A University)
  • Received : 2010.07.07
  • Published : 2010.12.25

Abstract

This study elucidates the formation mechanism of SnO plate observed during the precipitation reaction of a $SnCl_2$ aqueous solution. $Sn_{21}Cl_{16}(OH)_{14}O_6$ and $Sn_6O_4(OH)_4$ precipitates was formed at pH=3~5 and at pH=11, respectively. When the pH was in the range of 11.5~12.5, the $Sn_6O_4(OH)_4$ precipitates dissolved into $HSnO_2{^-}[Sn_6O_4(OH)_4+4OH^-={6HSnO_2{^-}+2H^+]$ and dissolved $HSnO_2{^-}$ ions reprecipitated to SnO plate $[HSnO_2{^-}+H^+=SnO+H_2O]$. The $Sn_6O_4(OH)_4$ precipitates completely transformed into SnO plate through a repeated process of dissolution-precipitation in the range of pH=11.5~12.5.

Keywords

Acknowledgement

Supported by : 신소형재가공청정공정개발연구센터

References

  1. J. H. Yoon, H. J. Lee, and J. S. Kim, Kor. J. Met. Mater. 48, 169 (2010). https://doi.org/10.3365/KJMM.2010.48.02.169
  2. C. S. Moon, H. Kim, G. Auchterlonie, J. Drennan, and J. Lee, Sensor and Actuators B 31, 556 (2008).
  3. E. Kuantama, D. Han, Y. Sung, J. Song, and C. Han, Thin Solid Film 517, 4211 (2009). https://doi.org/10.1016/j.tsf.2009.02.044
  4. N. Li and C. Martin, J. Electrochem. Soc. 148, A164 (2001). https://doi.org/10.1149/1.1342167
  5. Z. Jia, L. Zhu, G. Liao, Y. Yu, and Y. Tang, Solid State Communications 132, 79 (2004). https://doi.org/10.1016/j.ssc.2004.07.028
  6. D. Aurbach, A. Nimberger, B. Markovsky, E. Levi, E. Sominski, and A. Gedanken, Chem. Mater. 14, 4155 (2002). https://doi.org/10.1021/cm021137m
  7. T. Krishnakumar, N. Pinna, K. P. Kumari, K. Perumal, and R. Jayaprakash, Mater. Lett. 62, 3437 (2008). https://doi.org/10.1016/j.matlet.2008.02.062
  8. H. Uchiyama and H. Imai, Langmuir 24, 9038 (2008). https://doi.org/10.1021/la800955r
  9. S. Majumdar, S. Chakraborty, P. S. Devi, and A. Sen, Mater. Lett. 62, 1249 (2008). https://doi.org/10.1016/j.matlet.2007.08.022
  10. Z. R. Dai, Z. W. Pan, and Z. L. Wang, J. Am. Chem. Soc. 124, 8673 (2002). https://doi.org/10.1021/ja026262d
  11. X. Q. Pan and L. Fu, J. Electroceram. 7, 35 (2001). https://doi.org/10.1023/A:1012270927642
  12. G. Kozma, A. Kukovecz, and Z. Konya, J. Mol. Struct. 834, 430 (2007). https://doi.org/10.1016/j.molstruc.2006.10.031
  13. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, 475, Pergamon Press, Oxford (1966).
  14. F. I. Pires, E. Joanni, R. Savu, and M. A. Zaghete, Mater. Lett. 62, 239 (2008). https://doi.org/10.1016/j.matlet.2007.05.006
  15. K. Men, J. Ning, Q. Dai, D. Li, B. Liu, W. W. Yu, and B. Zou, Colloids and Surfaces A: Physicochem. Eng. Aspects 363, 30 (2010). https://doi.org/10.1016/j.colsurfa.2010.04.005
  16. D. S. Seo, H. Kim, and J. K. Lee, J. Crystal Growth 275, e2371 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.340
  17. F. B. Zhang and H. L. Li, Mater. Sci. Eng. C 27, 80 (2007). https://doi.org/10.1016/j.msec.2006.02.001
  18. S. Pavasupree, Y. Suzuki, S. Yoshikawa, and R. Kawahata, J. Solid State Chemistry 178, 3110 (2005). https://doi.org/10.1016/j.jssc.2005.07.022
  19. W. S. Jun, P. S. Yun, and E. C. Lee, Hydrometallurgy 73, 71 (2004). https://doi.org/10.1016/j.hydromet.2003.08.002
  20. L. S. Y. Lee and F. Lawson, Hydrometallurgy 23, 23 (1989). https://doi.org/10.1016/0304-386X(89)90015-7