DOI QR코드

DOI QR Code

Comparative Study on Energy Consumption in Steam-Humidification- and Water-Spray-Humidification-Type Outdoor Air-Conditioning Systems for Semiconductor Manufacturing Clean Rooms

반도체 클린룸용 증기가습 및 수분무가습 외기공조시스템의 에너지소비량 비교연구

  • 김형태 (고려대학교 기계공학과) ;
  • 송근수 (한국생산기술연구원 나노오염제어연구실) ;
  • 김기철 (한국생산기술연구원 나노오염제어연구실) ;
  • 유경훈 (한국생산기술연구원 나노오염제어연구실) ;
  • 손승우 ((주)성림피에스) ;
  • 신대건 ((주)대한피엔씨) ;
  • 박덕준 ((주)신성이엔지) ;
  • 권오명 (고려대학교 기계공학과)
  • Received : 2010.06.06
  • Accepted : 2011.11.02
  • Published : 2011.12.01

Abstract

In modern large-scale semiconductor manufacturing clean rooms, the energy consumed by the outdoor air-conditioning system during heating, humidification, cooling, and dehumidification of the incoming outdoor air represents about 45% of the total air-conditioning load required to maintain a clean-room environment. In particular, the energy required for humidification of the outdoor air in winter is very high. Therefore, evaluation and comparison of the energy consumption in key humidification systems, viz., steam-humidification and water-spray-humidification systems, used in outdoor air-conditioning systems would be useful to reduce the outdoor air-conditioning load in clean rooms. In the present study, an experiment with an outdoor air flow of 1000 $m^3$/h was conducted to compare the air-conditioning process and energy consumption in outdoor air-conditioning systems with electrodeboiler steam humidifiers and air-washer water spray humidification systems. The experimental results showed that the water-spray-humidification-type outdoor air-conditioning system consumed less electrical power than did the steam-humidification-type system and was more energy efficient during winter.

최근의 반도체 제조용 대규모 클린룸에서는 도입 외기를 가열가습 및 냉각감습하는 외기공조시스템의 에너지소비량이 클린룸 환경을 유지하기 위해 필요한 전체 공조에너지의 약 45 %를 차지하고 있다. 특히 동기(겨울철)의 경우 외기를 가습하기 위한 에너지소비량은 매우 높다. 따라서 에너지절감을 통한 제조비용 절감 및 온실가스 감축을 위해 외기부하와 관계되는 공조에너지의 사용효율 증대 및 철저한 사용합리화가 요구되고 있다. 따라서 반도체 클린룸용 외기공조시스템의 핵심 가습방식인 증기가습과 수분무가습 방식에 대한 소비전력량을 분석하는 것은 에너지절약적 측면에서 상당히 가치가 있다고 판단된다. 본 연구에서는 전극봉식 가습기에 의한 증기가습방식 및 에어와셔에 의한 수분무가습방식 외기공조시스템들의 공조프로세스 및 소비전력량을 외기량 1000 $m^3$/h의 경우 기흥지역의 동기 및 하기의 피크부하에 대해 비교하는 실험을 수행하였다. 실험결과들로부터 에어와셔 수분무가습 외기공조시스템이 전극봉식 증기가습 외기공조시스템보다 연간 소비전력량이 적어서 에너지절약적임을 보여주었다.

Keywords

References

  1. Watanabe, T., Fujii, T., Murata, K. and Wada, T., 1998, "Removal of Chemical Components in Air by Air Washer," Proc. of the 16th Annual Technical Meeting on Air Cleaning and Contamination Control, pp. 1-4, Japan Air Cleaning Association (in Japanese).
  2. Yoshizaki, S., Hasegawa, T., Fujii, M. and Iijima, K., 1999, "Removal of Chemical Compounds from Outside Air by Air Washer (Part 3) The Influence of the Temperature and Humidity of Inlet Air on Removal Efficiency," Proc. of the 17th Annual Technical Meeting on Air Cleaning and Contamination Control, pp. 1-4 (in Japanese).
  3. Song, G. H., Yoo K. H. and Son, S. W., 2008, "A Study on Ammonia Removal Performance Improvement of an Air Washer for Semiconductor Manufacturing Clean Rooms," Journal of Korean Society for Indoor Environment, Vol. 5, No. 2, pp. 151-157.
  4. Yoo, K.H., 2007, "Reduction of Air Conditioning Energy in Semiconductor/ Display Manufacturing Clean Rooms, " Air Cleaning Technology, Korea Air Cleaning Association, Vol. 20, No. 4, pp. 1-18.
  5. Tsao, J.-M., Hu, S.-C., Chan, D. Y.-L., Hsu, R. T.-C. and Lee, J. C.-C., 2008, "Saving Energy in the Makeup Air Unit (MAU) for Semiconductor Clean Rooms in Subtropical Areas," Energy and Buildings, Vol. 40, pp. 1387-1393. https://doi.org/10.1016/j.enbuild.2007.12.005
  6. Fujisawa, L., Moriya, M., Yosa, K., Ikuta, M., Yamamoto H. and Nabeshima, Y., 2001, "Removal of Chemical Contaminants as well as Heat Recovery by Air Washer (Part 1), " Proc. of the 19th Annual Technical Meeting on Air Cleaning and Contamination Control, pp. 166-168 (in Japanese).
  7. Fujisawa, S., Moriya, M., Yosa, K., Nishiwaki, S., Yamamoto H., Katsuki, T., Nabeshima, Y. and Oda, H., 2002, "Removal of Gaseous Chemical Contaminants as well as Heat Recovery by Air Washer (Part 2) ," Proc. of the 20th Annual Technical Meeting on Air Cleaning and Contamination Control, pp. 162-165 (in Japanese).
  8. Yamamoto H., Katsuki, T., Fujisawa, S., Yosa, K., Nishiwaki, S., Nabeshima, Y. and Oda, H., 2003, "Removal of Gaseous Chemical Contaminants as well as Heat Recovery by Air Washer (Part 3)," Proc. of the 21st Annual Technical Meeting on Air Cleaning and Contamination Control, pp. 151-154 (in Japanese).
  9. Yeo, K. H and Yoo K. H., 2006, "An Experiment on the Characteristics of Heat Recovery, Particle Collection and Gas Removal in an Air Washer System for Semiconductor Clean Rooms," Journal of Korean Society for Indoor Environment, Vol. 3, No. 2, pp. 131-140.
  10. Song, G.S., Yoo K.H., Kang, S.Y. and Son, S.W., 2009, "An Experimental Study on Energy Reduction of an Exhaust Air Heat Recovery Type Outdoor Air Conditioning System for Semiconductor Manufacturing Clean Rooms," Korean Journal of Air- Conditioning and Refrigeration Engineering, Vol. 21, No. 5, pp. 273-281.
  11. Song, G.S., Kim, H.T., Yoo, K.H., Son, S.W., Shin, D.K. and Kim, Y.I., 2010, "Numerical Analysis on Energy Reduction of an Exhaust-Air-Heat-Recovery Type Air Washer System for Semiconductor Manufacturing Clean Rooms," Korean Journal of Air- Conditioning and Refrigeration Engineering, Vol. 22, No. 10, pp. 697-703.
  12. JACA, 2007, "The Energy Conversion Factors for a Semiconductor Factory," Journal of Japan Air Cleaning Association, Vol. 46, No. 6, pp. 16-28, Japan Air Cleaning Association, Energy saving technical committee (in Japanese).
  13. Hu, S.-C., Wu, J.-S., Chan, D. Y.-L., Hsu, R. T.-C. and Lee, J. C.-C., 2008, "Power Consumption Benchmark for a Semiconductor Cleanroom Facility System," Energy and Buildings, Vol. 40, pp. 1765-1770. https://doi.org/10.1016/j.enbuild.2008.03.006