DOI QR코드

DOI QR Code

냉수공장에서 열전달을 고려한 응축기와 증발기의 물 압력강하 특성

Characteristics of the Water Pressure Drop Considering Heat Transfer in the Evaporator and Condenser of a Water Chiller

  • 투고 : 2011.05.17
  • 심사 : 2011.09.17
  • 발행 : 2011.12.01

초록

물 냉각기의 응축기와 증발기의 형상(길이, 관 직경, 관수, 통로 수)은 설비비용에 관련된 열전달 면적과 운전비용에 관련된 압력강하와의 조화로 결정될 수 있다. 물 냉각기 (냉동사이클)의 쉘-관 형상의 열교환기(응축기와 증발기)의 관 내부로 물이 통과할 때, 주어진 냉각부하와 요구조건을 만족하면서, 물 압력강하가 작은 설계조건에 초점을 맞추었다. 상업용 강화튜브의 사용과 상용 소프트웨어를 사용한 해석결과의 검증으로 실용성과 신뢰성 확보를 도모하였다. 해석결과, 관 통로 수를 적게, 관 직경을 크게, 관 수를 많게 선정하면, 관 길이를 짧게 하므로 물측 압력강하를 줄일 수 있었다. 그러나, 관수가 특정값보다 많을 때는 오히려 작은 관 직경을 사용하는 것이, 내부열저항의 감소로 인한 단위 길이 당 총열저항 감소 때문에, 관 길이를 짧게 하여 설비비용을 줄일 수 있었다.

The configurations of the evaporator and condenser of a water chiller can be determined from the trade-off between the heat transfer area, which is related to the capital cost and the pressure drop, which is associated with the operational cost. In this study, the design of the water chiller focused on minimizing the water pressure drop of both condenser and evaporator for given cooling capacity and requirements. Commercial enhanced tubes were employed to simulate real-life conditions. The results of the present analysis were compared with those obtained by HTRI software for verifying them. The results indicated that a reduction in the water pressure drop, which is associated with the short length of a tube, can be effected by decreasing the number of tube passes and increasing the number of tubes and the tube diameter. However, using a large number of tubes with smaller diameters can reduce the capital cost because the tubes are short. The reduction of the capital cost is due to the fact that a small-diameter tube has low internal thermal resistance and hence contributes to a decrease in the overall thermal resistance per unit length.

키워드

참고문헌

  1. Khalifeh Soltan, B., Saffar-Avval, M., and Damangir, E., 2004, "Minimizing Capital and Operating Costs of Shell and Tube Condensers Using Optimum Baffle Spacing," Applied Thermal Engineering, Vol. 24, No. 17-18, pp. 2801-2810. https://doi.org/10.1016/j.applthermaleng.2004.04.005
  2. Serna, M. and Jimenez, A., 2005, "A Compact Formulation of the Bell-Delaware Method for Heat Exchanger Design and Optimization," Chemical Engineering Research and Design, Vol. 83, No. 5, pp. 539-550. https://doi.org/10.1205/cherd.03192
  3. Ravagnani, M.A.S.S. and Caballero, J.A., 2007, "A MINLP Model for the Rigorous Design of Shell and Tube Heat Exchangers Using the TEMA Standards," Chemical Engineering Research and Design, Vol. 85, No. 10, pp. 1423-1435. https://doi.org/10.1016/S0263-8762(07)73182-9
  4. Allen, B. and Gosselin, L., 2008, "Optimal Geometry and Flow Arrangement for Minimizing the Cost of Shell-and-Tube Condensers," International Journal of Energy Research, Vol. 32, No. 10, pp. 958-969. https://doi.org/10.1002/er.1398
  5. Ponce-Ortega, J.M., Serna-Gonzalez, M., and Jimenez-Gutierrez, A., 2009, "Use of Genetic Algorithms for the Optimal Design of Shell-and-Tube Heat Exchangers," Applied Thermal Engineering, Vol. 29, No. 2-3, pp. 203-209. https://doi.org/10.1016/j.applthermaleng.2007.06.040
  6. Sanaye, S. and Hajabdollahi, H., 2010, "Multi- Objective Optimization of Shell and Tube Heat Exchangers," Applied Thermal Engineering, Vol. 30, No. 14-15, pp. 1937-1945. https://doi.org/10.1016/j.applthermaleng.2010.04.018
  7. Steven Brown, J., Yana-Motta, S.F., and Domanski, P.A., 2002, "Comparative Analysis of an Automotive Air Conditioning Systems Operating with CO2 and R134a," International Journal of Refrigeration, Vol. 25, No. 1, pp. 19-32. https://doi.org/10.1016/S0140-7007(01)00011-1
  8. Browne, M.W. and Bansal, P.K., 2001, "An Elemental NTU- ε Model for Vapour-Compression Liquid Chillers," International Journal of Refrigeration, Vol. 24, No. 7, pp. 612-627. https://doi.org/10.1016/S0140-7007(00)00091-8
  9. Serth, R.W., 2007, Process Heat Transfer-Principles and Applications, Elsevier Science & Technology Books, pp.189-569.
  10. Cavallini, A., et al., 2003, "Condensation Inside and Outside Smooth and Enhanced Tubes - A Review of Recent Research," International Journal of Refrigeration, Vol. 26, No. 4, pp. 373-392. https://doi.org/10.1016/S0140-7007(02)00150-0
  11. Engineering Equation Solver, 2003, F-Chart Software.
  12. Costa, A.L.H. and Queiroz, E.M., 2008, "Design Optimization of Shell-and-Tube Heat Exchangers," Applied Thermal Engineering, Vol. 28, No. 14-15, pp. 1798-1805. https://doi.org/10.1016/j.applthermaleng.2007.11.009
  13. Kuppan, T., 2000, Heat Exchangers Design Handbook, Marcel Dekker Inc., New York, pp. 233-234.
  14. Available from: www.highperformancetube.com.
  15. Available from: www.wlv.com
  16. HTRI Xchanger Suite v5.00, Heat Transfer Research, Inc.

피인용 문헌

  1. Design Optimization of Heat Exchangers for Solar-Heating Ocean Thermal Energy Conversion (SH-OTEC) Using High-Performance Commercial Tubes vol.40, pp.9, 2016, https://doi.org/10.3795/KSME-B.2016.40.9.557