DOI QR코드

DOI QR Code

Power Enhancement Potential of a Low-Temperature Heat-Source-Driven Rankine Power Cycle by Transcritical Operation

초월임계 운전에 의한 저온 열원 랭킨 동력 사이클의 출력 향상 가능성

  • Baik, Young-Jin (New and Renewable Energy Department, Korea Institute of Energy Research) ;
  • Kim, Min-Sung (New and Renewable Energy Department, Korea Institute of Energy Research) ;
  • Chang, Ki-Chang (New and Renewable Energy Department, Korea Institute of Energy Research) ;
  • Lee, Young-Soo (New and Renewable Energy Department, Korea Institute of Energy Research) ;
  • Ra, Ho-Sang (New and Renewable Energy Department, Korea Institute of Energy Research)
  • 백영진 (한국에너지기술연구원 신재생에너지연구본부) ;
  • 김민성 (한국에너지기술연구원 신재생에너지연구본부) ;
  • 장기창 (한국에너지기술연구원 신재생에너지연구본부) ;
  • 이영수 (한국에너지기술연구원 신재생에너지연구본부) ;
  • 나호상 (한국에너지기술연구원 신재생에너지연구본부)
  • Received : 2011.05.11
  • Accepted : 2011.07.29
  • Published : 2011.12.01

Abstract

In this study, the power enhancement potential of a Rankine power cycle by transcritical operation was investigated by comparing the power of an HFC-134a subcritical cycle with that of an HFC-125 transcritical cycle, for a low-grade heat source with a temperature of about $100^{\circ}C$. For a fair comparison using different working fluids, each cycle was optimized by three design parameters from the viewpoint of power. In contrast to conventional approaches, the working fluid's heat transfer and pressure drop characteristics were considered in the present approach, with the aim of ensuring a more realistic comparison. The results showed that the HFC-125 transcritical cycle yields 9.4% more power than does the HFC-134a subcritical cycle under the simulation conditions considered in the present study.

본 연구에서는 $100^{\circ}C$의 저온 열원을 이용하여 구동되는 랭킨 동력 사이클에 대하여, HFC-134a를 이용한 아임계 운전을 할 경우의 출력과 HFC-125 를 이용한 초월임계 운전을 할 경우의 출력을 서로 비교함으로써, 초월임계 운전에 의한 출력 향상 가능성을 연구하였다. 서로 다른 두 사이클들의 출력을 공정하게 비교하기 위하여, 각 사이클들을 3 개의 설계인자를 이용하여 최적화 하였다. 이 때, 보다 현실적인 결과를 위하여 기존의 연구와는 달리, 열교환 과정에서 작동유체의 열전달 및 압력강하 특성을 고려하였다. 시뮬레이션 결과, HFC-125 초월임계 사이클의 출력이 HFC-134a 아임계 사이클의 출력에 비해 본 연구의 시뮬레이션 조건 하에서 9.4% 향상 될 수 있음을 보였다.

Keywords

References

  1. Tchanche, B. F., Papadakis, G., Lambrinos, G. and Frangoudakis, A., 2009, "Fluid Selection for a Low- Temperature Solar Organic Rankine Cycle," Applied Thermal Engineering, Vol. 29, pp. 2468-2476. https://doi.org/10.1016/j.applthermaleng.2008.12.025
  2. Hung, T. C., Wang, S. K., Kuo, C. H., Pei, B. S. and Tsai, K. F., 2010, "A Study of Organic Working Fluids on System Efficiency of an ORC Using Low-Grade Energy Sources," Energy, Vol. 35, pp. 1403-1411. https://doi.org/10.1016/j.energy.2009.11.025
  3. Papadopoulos, A. I., Stijepovic, M. and Linke, P., 2010, "On the Systematic Design and Selection of Optimal Working Fluids for Organic Rankine Cycles," Applied Thermal Engineering, Vol. 30, pp. 760-769. https://doi.org/10.1016/j.applthermaleng.2009.12.006
  4. Madhawa Hettiarachchi, H. D., Golubovic, M., Worek, W. M. and Ikegami Y., 2007, "Optimum Design Criteria for an Organic Rankine Cycle Using Low-Temperature Geothermal Heat Sources," Energy, Vol. 32, pp. 1698-1706. https://doi.org/10.1016/j.energy.2007.01.005
  5. Dai, Y., Wang, J. and Gao, L., 2009, "Parametric Optimization and Comparative Study of Organic Rankine Cycle (ORC) for Low Grade Waste Heat Recovery," Energy Conversion and Management, Vol. 50, pp. 576-582. https://doi.org/10.1016/j.enconman.2008.10.018
  6. Saleh, B., Koglbauer, G., Wendland, M. and Fischer, J., 2007, "Working Fluids for Low-Temperature Organic Rankine Cycles," Energy, Vol. 32, pp. 1210-1221. https://doi.org/10.1016/j.energy.2006.07.001
  7. Chen, Y., Lundqvist, P., Johansson, A. and Platell, P., 2006, "A Comparative Study of Carbon Dioxide Transcritical Power Cycle Compared with an Organic Rankine Cycle with R123 as Working Fluid in Waste Heat Recovery," Appl Therm Eng, Vol. 26, pp. 2142-2147. https://doi.org/10.1016/j.applthermaleng.2006.04.009
  8. Cayer, E., Galanis, N., Desilets, M., Nesreddine, H. and Roy, P., 2009, "Analysis of Carbon Dioxide Transcritical Power Cycle Using a Low Temperature Source," Appl Energy, Vol. 86, pp. 1055-1063. https://doi.org/10.1016/j.apenergy.2008.09.018
  9. Wang, J., Sun, Z., Dai, Y. and Ma, S., 2010, "Parametric Optimization Design for Supercritical CO2 Power Cycle Using Genetic Algorithm and Artificial Neural Network," Appl Energy, Vol. 87, pp. 1317-1324. https://doi.org/10.1016/j.apenergy.2009.07.017
  10. Cayer, E., Galanis, N. and Nesreddine, H., 2010, "Parametric Study and Optimization of a Transcritical Power Cycle Using a Low Temperature Source," Appl Energy, Vol. 87, pp. 1349-1357. https://doi.org/10.1016/j.apenergy.2009.08.031
  11. Chen, H., Goswami, D. Y. and Stefanakos, E. K., 2010, "A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat," Renewable and Sustainable Energy Reviews, Vol. 14, pp. 3059-3067. https://doi.org/10.1016/j.rser.2010.07.006
  12. Gu, Z. and Sato, H., 2002, "Performance of Supercritical Cycles for Geothermal Binary Design," Energy Conversion and Management, Vol. 43, pp. 961-971 https://doi.org/10.1016/S0196-8904(01)00082-6
  13. Yamaguchi, H., Zhang, X. R., Fujima, K., Enomoto, M. and Sawada, N., 2006, "Solar Energy Powered Rankine Cycle Using Supercritical CO2," Appl Therm Eng, Vol. 26, pp. 2345-2354. https://doi.org/10.1016/j.applthermaleng.2006.02.029
  14. Zhang, X. R., Yamaguchi, H. and Uneno, D., 2007, "Experimental Study on the Performance of Solar Rankine System Using Supercritical CO2," Renewable Energy, Vol. 32, pp.2617-2628. https://doi.org/10.1016/j.renene.2007.01.003
  15. Lewis, R. M. and Torczon, V., 2002, "A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds," SIAM Journal on Optimization, Vol. 12, pp. 1075-1089. https://doi.org/10.1137/S1052623498339727
  16. Genetic Algorithm and Direct Search Toolbox 2 for MATLAB user's guide, 2007, The MathWorks Inc.
  17. Gungor, K. E. and Winterton, R. H. S., 1987, "Simplified General Correlation for Saturated Flow Boiling and Comparisons of Correlations with Data," Chem. Eng. Res. Des., Vol. 65, pp. 148-156.
  18. Gnielinski, V., 1976, "New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow," Int. Chem. Eng., Vol. 16, pp. 359-368.
  19. Shah, M. M., 1979, "A General Correlation for Heat Transfer During Film Condensation Inside Pipe," Int. J. of Heat Mass Transfer, Vol. 22, pp. 547-556. https://doi.org/10.1016/0017-9310(79)90058-9
  20. Petukhov, B. S. and Kirillov, V. V., 1958, "On Heat Exchange at Turbulent Flow of Liquid in Pipes," Teploenergetika, Vol. 4, pp. 63-68.
  21. Krasnoshchekov, E. A. and Protopopov, V. S., 1966, "Experimental Study of Heat Exchange in Carbon Dioxide in the Supercritical Range at High Temperature Drops," Teplofiz Vys Temp, Vol. 4, pp. 389-398.
  22. Baik, Y. J., Kim, M. S., Chang, K. C. and Kim, S. J., 2011, "Power-Based Performance Comparison Between Carbon Dioxide and R125 Transcritical Cycles for a Low-Grade Heat Source," Appl Energy, Vol. 88, pp. 892-898. https://doi.org/10.1016/j.apenergy.2010.08.029
  23. Muller-Steinhagen, H. and Heck, K., 1986, "A Simple Pressure Drop Correlation for Two-Phase Flow in Pipes," Chem. Eng. Process, Vol. 20, 297-308. https://doi.org/10.1016/0255-2701(86)80008-3
  24. Collier, J. G. and Thome, J. R., 1994, "Convective Boiling and Condensation," 3rd ed., Clarendon Press, Oxford.
  25. Lemmon, E. W., Huber, M. L. and McLinden, M. O., 2007, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg.
  26. MATLAB Version R2009a, 2009, The MathWorks Inc.
  27. Holdmann, G., 2007, "The Chena Hot Springs 400kW Geothermal Power Plant: Experience Gained During the First Year of Operation," GRC Conference.