DOI QR코드

DOI QR Code

CFD Study on Aerodynamic Power Output of 6 MW Offshore Wind Farm According to the Wind Turbine Separation Distance

CFD를 활용한 6 MW 해상풍력발전단지의 풍력터빈 이격거리에 따른 공기역학적 출력 변화연구

  • Received : 2011.10.04
  • Accepted : 2011.11.01
  • Published : 2011.11.30

Abstract

This paper presents aerodynamic power outputs of wind turbine of 6 MW wind farm composed of 3 sets of 2 MW wind turbine according to the separation distance by using CFD. Layout design including offshore wind farm and onshore wind farm is key factor for the initial investment cost, annual energy production and maintenance cost. For each wind turbine rotor, not actuator disc model with momentum source but full 3-dimensional model is used for CFD and it has a great technical meaning. The results of this study can be applied to the offshore wind farm layout design effectively.

본 논문은 2 MW급 풍력터빈 3기로 구성된 6 MW 해상풍력발전단지의 풍력터빈 이격거리에 따른 공기역학적 출력 변화를 전산유동해석을 활용하여 연구한 것이다. 육상 뿐만 아니라 해상풍력발전단지에 있어서 레이아웃 설계는 풍력발전단지 초기 투자비, 년간 발전량 및 유지보수비에 영향을 끼치는 핵심 인자이다. 각 풍력터빈 로터에 대해서 모멘텀 소스를 가지는 액츄에이터 디스크가 아닌 완전한 3-D 모델에 대해서 전산유동해석 기법을 적용하여 연구하였으며 이는 기술적으로 큰 의미를 가진다. 본 논문의 연구결과는 향후 해상풍력발전단지 레이아웃 설계에 유용하게 적용될 수 있을 것이다.

Keywords

References

  1. K. C. Tong, "Technical and economic aspects of a floating offshore wind farm,"Journal of Wind Engineering and Industrial Aerodynamics, vol. 74-76, pp. 399-410, 1998. https://doi.org/10.1016/S0167-6105(98)00036-1
  2. J. F. Manwell, J. G. McGowan and A. L. Rogers, Wind Energy Explained-Theory, Design and Application, John Wiley & Sons (Canada), 2002.
  3. Wang Zhixin, Jiang Chuanwen, Ai Qian and Wang Chengmin, "The key technology of offshore wind farm and its new development in China," Renewable and Sustainable Energy Reviews, vol. 13, pp. 216-222, 2009. https://doi.org/10.1016/j.rser.2007.07.004
  4. Javier Serrano Gonzalez, Angel G. Gonzalez Rodriguez, Jose Castro Mora, Jesus Riquelme Santos and Manuel Burgos Payan, "Optimization of wind farm turbines layout using an evolutive algorithm," Renewable Energy, vol. 35, pp. 1671-1681, 2010. https://doi.org/10.1016/j.renene.2010.01.010
  5. 최낙준, 남상현, 정종현, 김경천, "이격 거리에 따른 2 MW급 풍력발전기 배열의 출력영향에 관한 전산유동해석적 연구," 제 6회 한국유체공학학술대회, vol. 1, pp. 183-185, 2010.
  6. http://cires.colorado.edu/news/archives/2009/pichuginaTurbulence.html
  7. 최낙준, "풍력발전단지 레이아웃 설계를 위한 CFD 역할," ANSYS 풍력세미나 초청 강연, 2011.
  8. M.L.Ray, A.L. Rogers and J.G. McGowan, "Analysis of wind shear models and trends in different terrains," Proceedings of American Wind Energy Association Windpower 2006.
  9. $DNV/Ris\phi$, Guidelines for Design of Wind Turbines, Jydsk Centraltrykkeri, 2002.
  10. Peter Eecen, "Wind farm calculation and optimization with FarmFlow," Dutch Wind Workshops, 2010.
  11. M. O. L. Hansen, J. N. Sorensen, S. Voutsinas, N. Sorensen and H. Aa. Madsen, "State of the art in wind turbine aerodynamics and aeroelasticity," Progress in Aerospace Sciences, vol. 42, pp. 285-330, 2006. https://doi.org/10.1016/j.paerosci.2006.10.002

Cited by

  1. Design and CFD study of 360 W class wind turbine tree in accordance with environmental scenery vol.37, pp.1, 2013, https://doi.org/10.5916/jkosme.2013.37.1.78
  2. Arrangement Design and Performance Evaluation for Multiple Wind Turbines of 10MW Class Floating Wave-Offshore Wind Hybrid Power Generation System vol.18, pp.2, 2015, https://doi.org/10.7846/JKOSMEE.2015.18.2.123
  3. Assessment of Wind Atlas Analysis and Application Program and computational fluid dynamics estimates for power production on a Jeju Island wind farm vol.40, pp.1, 2016, https://doi.org/10.1177/0309524X15624346
  4. 다수 풍력터빈의 후류영향 최소화 및 연간발전량 극대화를 위한 부유식 파력-해상풍력 플랫폼 최적배치 vol.41, pp.3, 2011, https://doi.org/10.5916/jkosme.2017.41.3.209