DOI QR코드

DOI QR Code

Numerical Analysis of the Prediction of Zincate Concentration at a Zinc Electrode with Electrolyte Flow Conditions in a Zinc Air Fuel Cell

전해질 유동 조건에 따른 아연공기전지 아연극 표면의 Zincate 이온 농도 예측을 위한 수치해석적 연구

  • Kim, Jung-Yun (Hyundai Industrial Research Institute, Hyundai Heavy Industries CO., Ltd.) ;
  • Lee, Ho-Il (Hyundai Industrial Research Institute, Hyundai Heavy Industries CO., Ltd.) ;
  • Oh, Tae-Young (Hyundai Industrial Research Institute, Hyundai Heavy Industries CO., Ltd.) ;
  • Park, Sang-Min (Hyundai Industrial Research Institute, Hyundai Heavy Industries CO., Ltd.)
  • 김정윤 (현대중공업 산업기술연구소) ;
  • 이호일 (현대중공업 산업기술연구소) ;
  • 오태영 (현대중공업 산업기술연구소) ;
  • 박상민 (현대중공업 산업기술연구소)
  • Received : 2011.11.04
  • Accepted : 2011.11.28
  • Published : 2011.11.30

Abstract

In this work, the numerical analysis for the zincate behavior at a zinc electrode with an electrolyte flow was carried out for a ZAFC. The Nernst-Planck equation with a boundary condition of Butler-Volmer type was adopted to describe electrochemical effects of mass transfer, migration, kinetics of electrode. The Navier-Stokes equation, coupling to the Nernst-Planck equation, is also applied to describe the internal electrolyte flow fields. The validity of the numerical model is proved through the comparative analysis between numerical and experimental results. The concentration of zincate and the current density were also investigated at a zinc anode according to various electrolyte velocities. We have found the concentration of zincate decreased and the current density increased with an increase in the electrolyte velocity.

수치해석을 이용하여 아연공기전지의 전기화학적 성능을 예측하였다. KOH 수계전해질 내부의 이동현상을 예측하기 위하여 Nernst-Planck식을 사용하였고, 전극 표면의 활성화손실을 모사하기 위해 아연극(음극)에는 Butler-Volmer식을, 공기극(양극)에는 Tafel식을 적용하였다. 정상상태해석을 통하여 아연/공기전지의 I-V곡선을 도출하였으며, 실험결과와의 I-V곡선 비교/분석을 통하여 수치 해석 모델의 타당성을 검증하였다. 전지반응 진행에 따른 전해질 내부의 이온 이동 및 분포 특성을 조사하기 위해 과도상태해석을 수행하였으며, 전극주변에서의 ${Zn(OH)_4}^{-2}$, $OH^-$, $K^+$ 이온들의 농도변화를 확인할 수 있었다. 또한, 다양한 전지전압조건 하에서 반응시간에 따라 아연극 표면에서의 ${ZnOH_4}^{2-}$의 농도 변화를 해석한 결과, 반응진행시 아연극 표면에서 ${ZnOH_4}^{2-}$의 농도가 최고성능을 나타내는 운전전압 0.63 V에서 약 1초 만에 포화농도에 도달하였으며, 일반적인 운전조건인 1.04 V에서는 약 13초 만에 포화농도에 접근하는 것으로 나타났다.

Keywords

References

  1. K. D. Hong, 'Gravity Field Effects on Zinc Anode Discharge in Alkaline Media', J. Electrochem. Soc., 108, pp. 909 (1961). https://doi.org/10.1149/1.2427919
  2. J. O'M. Bockris, Z. Nagy, and A. Damjanovic, 'On the Deposition and Dissolution of Zinc in Alkaline Solutions', J. Electrochem. Soc., Vol. 119, PP. 285 (1972). https://doi.org/10.1149/1.2404188
  3. Ming-Biann Liu, G. M. Cook, and N. P. Yao, 'Passivation of Zinc Anodes in KOH Electrolytes', J. Electrochem. Soc., 12, 1663 (1981).
  4. Mark J. Isaacson, Frank R. McLarnon, and Elton J. Cairns, 'Current Density and ZnO Precipitation-Dissolution Distributions in Zn-ZnO Porous Electrodes and Their Effect on Material Redistribution: A Two-Dimensional Mathematical Model', J. Electrochem. Soc., 137, 2014 (1990). https://doi.org/10.1149/1.2086856
  5. Jeffrey K. Weaver, Frank R. McLarnon, and Elton J. Cairns, 'Experimental and Theoretical Study of Concentration Distributions in a Model Pore Electrode', J. Electrochem. Soc., 138, 2014 (1991).
  6. Jeffrey K. Weaver, Frank R. McLarnon, and Elton J. Cairns, 1991, "Experimental and Theoretical Study of Concentration Distributions in a Model Pore Electrode", J. Electrochem. Soc., 138, 2572 (1991). https://doi.org/10.1149/1.2086019
  7. M. Farnsworth, C. H. Kline, and J. G Noltes, 'Zinc Cehemicals', Zinc Development Association,. London., (1973).
  8. T. P. Dirkse, in 'Zinc-Silver Oxides Batteries', A Fleischer and J.Lander, Editors, pp.1, Electrochemical Society Inc., Princeton, NJ., (1971).
  9. J. McBeen and E. J. Cairns, in 'Advances in Electrochemistry and Electrochemical Engineering', H Gerischer and C. W. Tobias, Editor, pp.273, John Wiley & Sons, New York., (1978).
  10. R. J. Giliam, J. W. Graydon, D. W. Kirk, and S. J. Thorpe, 'A Review of Specific Conductivities of Potassium Hydroxide Solutions for Various Concentrations and Temperatures', International Journal of Hydrogen Energy, 32, 359-364 (2007). https://doi.org/10.1016/j.ijhydene.2006.10.062
  11. Cecilia Y. Mak and Huk Y. Cheh, 'Migration Considerations in Chronopotentiometric Analysis', J. Electrochem. Soc., 135, 2662 (1988).
  12. Alan K. Hauser and John Newman, 'Potential and Concentration Variations of a Reacting, Supporting Electrolyte', J. Electrochem. Soc., 136, 3319 (1989). https://doi.org/10.1149/1.2096445

Cited by

  1. Study of Zinc Compounds for Improving the Reversibility of the Zinc Anode in Zinc-Air Secondary Batteries vol.38, pp.7, 2017, https://doi.org/10.1002/bkcs.11157