DOI QR코드

DOI QR Code

Effect of Sintering Temperature and Sb/Bi Ratio on Microstructure and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-Co3O4 Varistor

소결온도와 Sb/Bi 비가 ZnO-Bi2O3-Sb2O3-Co3O4 바리스터의 미세구조와 입계 특성에 미치는 영향

  • Hong, Youn-Woo (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Hyo-Soon (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Yeo, Dong-Hun (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
  • 홍연우 (한국세라믹기술원 미래융합세라믹본부) ;
  • 신효순 (한국세라믹기술원 미래융합세라믹본부) ;
  • 여동훈 (한국세라믹기술원 미래융합세라믹본부) ;
  • 김진호 (경북대학교 신소재공학부)
  • Received : 2011.10.20
  • Accepted : 2011.11.23
  • Published : 2011.12.01

Abstract

In this study we aims to evaluate the effects of 1/3 mol% $Co_3O_4$ addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and grain boundary properties of $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=2.0, 1.0, and 0.5) system (ZBS). The samples were prepared by conventional ceramic process, and characterized by XRD, density, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. In addition of $Co_3O_4$ in $ZnO-Bi_2O_3-Sb_2O_3$ (ZBSCo), the phase development, density, and microstructure were controlled by Sb/Bi ratio. Pyrochlore on cooling was reproduced in all systems. The more homogeneous microstructure was obtained in ZBSCo (Sb/Bi=1.0) system. In ZBSCo, the varistor characteristics were improved drastically (non-linear coefficient ${\alpha}$=23~50) compared to ZBS. Doping of $Co_3O_4$ to ZBS seemed to form $V^{\cdot}_o$(0.33 eV) as dominant defect. From IS & MS, especially the grain boundary of Sb/Bi=0.5 system is composed of electrically single barrier (0.93 eV) and somewhat sensitive to ambient oxygen with temperature.

Keywords

References

  1. D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999).
  2. T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  3. K. Eda, IEEE Elec. Insulation. Mag., 5, 28 (1989).
  4. R. Einzinger, Ann. Rev. Mater. Sci., 17, 299 (1987). https://doi.org/10.1146/annurev.ms.17.080187.001503
  5. L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull., 65, 639 (1986).
  6. Y. W. Hong, Bull. KIEEME, 24, 3 (2011).
  7. M. Inada,, Jpn. J. Appl. Phys., 18, 1439 (1979). https://doi.org/10.1143/JJAP.18.1439
  8. M. Inada and M. Matsuoka, Advances in Ceramics (American Ceramic Society, Columbus, 1983) p. 91.
  9. J. Kim, T. K. Kimura, and T. Yamaguchi, J. Am. Ceram. Soc., 72, 1390 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb07659.x
  10. A. Mergen and W. E. Lee, J. Eur. Ceram. Soc., 17, 1049 (1997). https://doi.org/10.1016/S0955-2219(96)00248-8
  11. Y. W. Hong and J. H. Kim, J. Kor. Ceram. Soc., 37, 651 (2000).
  12. Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 21, 738 (2008).
  13. L. Karanovic, D. Poleti, and D. Vasovic, Mater. Lett., 18, 191 (1994). https://doi.org/10.1016/0167-577X(94)90229-1
  14. F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990). https://doi.org/10.1088/0268-1242/5/2/001
  15. Y. W. Hong and J. H. Kim, Ceram. Int., 30, 1307 (2004). https://doi.org/10.1016/j.ceramint.2003.12.026
  16. J. Han, P. Q. Mantas, and A. M. R. Senos, J. Euro. Ceram. Soc., 22, 49 (2002). https://doi.org/10.1016/S0955-2219(01)00241-2
  17. M. H. Sukker and H. L. Tuller, Advances in Ceramics (American Ceramic Society, Columbus, 1983) p. 71.
  18. G. D. Mahan, J. Appl. Phys., 54, 3825 (1983). https://doi.org/10.1063/1.332607
  19. K. A. Abdullah, A. Bui, and A. Loubiere, J. Appl. Phys., 69, 4046 (1991). https://doi.org/10.1063/1.348414
  20. M. Andres-Verges and A. R. West, J. Electroceram., 1, 125 (1997). https://doi.org/10.1023/A:1009906315725
  21. Y. W Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 22, 941 (2009).
  22. Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 368 (2010).
  23. Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 942 (2010).
  24. H. R. Philipp, Materials Science Research, Tailoring Multiphase and Composite Ceramics (eds. R. E. Tressler, G. L. Messing, C. G. Pantano, and R. E. Newnham) (Prenum Press, New York/London, 1987) p. 481.