DOI QR코드

DOI QR Code

Correlation of the Rates of Solvolysis of 1-Piperidincarbonyl Chloride Using the Extended Grunwald-Winstein Equation

  • Choi, Ho-June (Department of Chemistry, Gyeongsang National University) ;
  • Ali, Dildar (Institute of Biochemistry, University of Balochistan) ;
  • Lee, Jong-Pal (Department of Chemistry, Dong-A University) ;
  • Yang, Ki-Yull (Department of Chemical Education and Research Instituted of Natural Science, Gyeongsang National University) ;
  • Park, Jong-Keun (Department of Chemical Education and Research Instituted of Natural Science, Gyeongsang National University) ;
  • Koo, In-Sun (Department of Chemical Education and Research Instituted of Natural Science, Gyeongsang National University)
  • Received : 2011.08.04
  • Accepted : 2011.09.09
  • Published : 2011.11.20

Abstract

The specific rates of sovolysis of 1-piperidincarbonyl chloride (1) have been determined in 26 pure and binary solvents at $25.0^{\circ}C$. Comparison of the specific rates of solvolyses of 1 with those for p-methoxybenzoyl chloride and those for 4-morpholinecarbonyl chloride in terms of linear free energy relationships (LFER) are helpful in mechanistic considerations, as is also treatment in terms of the extended Grunwald-Winstein equation. It is proposed that the solvolyses of 1 in binary aqueous solvent mixtures proceed through an ionization [I] pathway rather than through an $S_N1/S_N2$ and/or ionization/(ionization-elimination) = [I/(I-E)] pathway.

Keywords

References

  1. Nicholas, A. M.; Christopher, P. L.; Patrick, M. P.; James, P. W. Org. Lett. 2010, 12, 3700. https://doi.org/10.1021/ol101405g
  2. Parlow, J. J.; Burney, M. W.; Case, B. L.; Girard, T. J.; Hall, K. A.; Harris, P. K.; Hiebsch, R. R.; Huff, R. M.; Lachance, R. M.; Mischke, D. A.; Rapp, S. R.; Woerndle, R. S.; Ennis, M. D. Med. Chem. 2010, 53, 2010. https://doi.org/10.1021/jm901518t
  3. Young, J. R.; Eid, R.; Turner, C.; DeVita, R. J.; Kurtz, M. M.; Tsao, K.-L. C.; Chicchi, G. G.; Wheeldon, A.; Carlson, E.; Mills, S. G. Bio. & Med. Chem. Lett. 2007, 17, 5310. https://doi.org/10.1016/j.bmcl.2007.08.028
  4. Hwu, J. R.; Hsu, M.-H.; Huang, R. C. Bio. & Med. Chem. Lett. 2008, 18, 1884. https://doi.org/10.1016/j.bmcl.2008.02.018
  5. D'Souza, M. J.; Mahon, B. P.; Kevill, D. N. Int. J. Mol. Sci. 2010, 11, 2597. https://doi.org/10.3390/ijms11072597
  6. D'Souza, M. J.; Carter, S. E.; Kevill, D. N. Int. J. Mol. Sci. 2011, 12, 1161. https://doi.org/10.3390/ijms12021161
  7. Bentley, T. W.; Koo, I. S. J. Chem. Soc., Perkin Trans. 2 1989, 1385.
  8. Bentley, T. W.; Harris, H. C.; Koo, I. S. J. Chem. Soc., Perkin Trans. 2 1988, 783.
  9. T Bentley, T. W.; Koo, I. S. JCS Chem. Comm. 1988, 41.
  10. Bentley, T. W.; Ebdon, D. N.; Kim, EJ.; Koo, I. S. J. Org. Chem. 2004, C C.
  11. Koo, I. S.; An, S. K.; Yang, K.; Koh, H. J.; Choi, M. H.; Lee, I. Bull. Korean Chem. Soc. 2001, 22, 842.
  12. Koo, I. S.; Yang, K.; Kang, K.; Kang, D. H.; Park, H. J.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 577.
  13. Oh, J.; Yang, K.; Koo, I. S.; Lee, I. J. Chem Res(M) 1993, 2040.
  14. Koo, I. S.; Kim, J.-S.; An, S. K.; Yang, K.; Lee, I. J. Korean Chem. Soc. 1999, 43, 527.
  15. Koo, I. S.; Yang, K.; Kang, K.; Park, J. K.; Oh, H. K.; Lee, I. Bull. Korean Chem. Soc. 1997, 18, 179.
  16. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
  17. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700. https://doi.org/10.1021/ja01150a078
  18. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121. https://doi.org/10.1002/9780470171967.ch5
  19. Kevill, D. N.; D'Souza, M. J. J. Chem. Res. Synop.1993, 174.
  20. Lomas, J. S.; D'Souza, M. J.; Kevill, D. N. J. Am. Chem. Soc. 1995, 117, 5891. https://doi.org/10.1021/ja00126a045
  21. Bentley, T. W.; Carter, G. E.; Harris, H. C. J. Chem. Soc., Chem. Commun. 1984, 388.
  22. Bentley, T. W.; Carter, G. E.; Harris, H. C. J. Chem. Soc., Perkin Trans. 2 1985, 983.
  23. Bentley, T. W.; Harris, H. C. J. Chem. Soc., Perkin Trans. 2 1986, 619.
  24. Swain, C. G.; Mosely, R. B.; Bown, D. E. J. Am. Chm. Soc. 1955, 77, 3731. https://doi.org/10.1021/ja01619a018
  25. Koo, I. S.; Bentley, T. W.; Kang, D. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1991, 173.
  26. Koo, I. S.; Bentley, T. W.; Llewellyn, G.; Yang, K. J. Chem. Soc., Perkin Trans. 2 1991, 1175.
  27. Koo, I. S.; Kwon, E.; Choi, H.; Yang, K.; Park, J. K.; Lee, J. P.; Lee, I.; Bentley, T. W. Bull. Korean Chem. Soc. 2007, 28, 2377. https://doi.org/10.5012/bkcs.2007.28.12.2377
  28. Kevill, D. N. Development and Uses of Scales of Solvent Nucleophilicity, In Advances in Quantitative Structure-Property Relationships; Charton, M., Ed.; JAI Press: Greenwich, CT, 1996; Vol. 1, 81-115.
  29. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845. https://doi.org/10.1021/jo00005a034
  30. Kevill, D. N.; Ismail, N. H. J.; D'Souza, M. J. J. Org. Chem. Soc. 1994, 59, 6303. https://doi.org/10.1021/jo00100a036
  31. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc., Perkin Trans. 2 1995, 973.
  32. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc., Perkin Trans. 2 1997, 257.
  33. Kevill, D. N.; Bond, M. W.; D'Souza, M. J. J. Org. Chem. 1997, 62, 7869. https://doi.org/10.1021/jo970657b
  34. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc., Perkin Trans. 2 2002, 240.
  35. Kyong, J. B.; Rhu, C. J.; Kim, Y. G.; Kevill, D. N. J. Phys. Org. Chem. 2007, 20, 525. https://doi.org/10.1002/poc.1194
  36. Lee, I.; Koo, I. S.; Sohn, S. C.; Lee, H. H. Bull. Korean Chem. Soc. 1982, 3, 92.
  37. Lee, I.; Sung, D. D.; Uhm, T. S.; Ryu, Z. H. J. Chem. Soc., Perkin Trans. 2 1989, 1697.
  38. Bentley, T. W.; Harris, H. C. J. Org. Chem. 1988, 53, 724. https://doi.org/10.1021/jo00239a004
  39. Bentley, T. W.; Koo, I. S.; Norman, S. J. J. Org. Chem. 1991, 56, 1604. https://doi.org/10.1021/jo00004a048
  40. Koo, I. S.; Lee, J. S.; Yang, K.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 573.
  41. Koo, I. S.; Yang, K.; Koo, J. C.; Park, J. K.; Lee, I. Bull. Korean Chem. Soc.1997, 18, 1017.
  42. Koo, I. S.; Yang, K.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1998, 19, 968.
  43. Kevill, D. N.; Kim, J. C.; Kyong, J. B. J. Chem. Research. 1999, 150.
  44. An, S. K.; Yang, T. S.; Cho, J. M.; Yang, K.; Lee, J. P.; Bentley, T. W.; Lee, I.; Koo, I. S. Bull. Korean Chem. Soc. 2002, 23, 1445. https://doi.org/10.5012/bkcs.2002.23.10.1445
  45. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 1998, 63, 21. https://doi.org/10.1021/jo970602+
  46. Kim, R.; Ali, D.; Lee, J. P.; Yang, K.; Koo, I. S. Bull. Korean Chem. Soc. 2010, 31, 1963. https://doi.org/10.5012/bkcs.2010.31.7.1963
  47. Bentley, T. W.; Koo, I. S.; Norman, S. J. J. Org. Chem. 1991,56, 1604. https://doi.org/10.1021/jo00004a048
  48. Oh, J.; Yang, K.; Koo, I. S.; Lee, I. J. Chem. Res. 1993, 310.
  49. Queen, A. Can. J. Chem. 1967, 45, 1619. https://doi.org/10.1139/v67-264
  50. Yew, K. H.; Koh, H. J.; Lee, H. W. J. Chem. Soc., Perkin Trans. 2 1995, 2263.
  51. Koo, I. S.; Yang, K.; Kang, K.; Oh, H. J.; Lee, I. Bull. Korean Chem. Soc. 1996, 17, 520.
  52. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 1998, 63, 2120. https://doi.org/10.1021/jo9714270
  53. McLennan, D. J.; Martin, P. L. J. Chem. Soc., Perkin Trans. 2 1982, 1099.
  54. Liu, K.-T.; Duann, Y. F.; Hou, S. H. J. Chem. Soc., Perkin Trans. 2 1998, 2181.
  55. Liu, K.-T.; Chen, H.-I. J. Chem. Soc., Perkin Trans. 2 2000, 893.
  56. Ryu, Z. H.; Shin, S. H.; Lim, G. T.; Lee, J. P. Bull. Korean Chem. Soc. 2004, 25, 307. https://doi.org/10.5012/bkcs.2004.25.2.307
  57. Ryu, Z. H.; Bentley, T. W. Bull. Korean Chem. Soc. 2008, 29, 2145. https://doi.org/10.5012/bkcs.2008.29.11.2145
  58. Kevill, D. N.; Ryu, Z. H.; Niedermeyer, M. A.; Koyoshi, F.; D'Souza, M. J. J. Phys. Org. Chem. 2007, 20, 431. https://doi.org/10.1002/poc.1168
  59. Ryu, Z. H.; Lee, S. W.; D'Souza, M. J.; Yaakoubd, L.; Feld, S. E.; Kevill, D. N. Int. J. Mol. Sci. 2008, 9, 2639. https://doi.org/10.3390/ijms9122639
  60. Kyong, J. B.; Yoo, J. S.; Kevill, D. N. J. Org. Chem. 2003, 68, 3425. https://doi.org/10.1021/jo0207426
  61. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc., Perkin Trans. 2 1997, 1721.
  62. Kyong, J. B.; Won, H.; Kevill, D. N. Int. J. Mol. Sci. 2005, 6, 87. https://doi.org/10.3390/i6010087
  63. Kyong, J. B.; Kim, Y. G.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2000, 21, 662.
  64. Kyong, J. B.; Park, B. C.; Kim, C. B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051. https://doi.org/10.1021/jo005630y
  65. Bentley, T. W.; Llewellyn, G.; Ryu, Z. H. J. Org. Chem. 1998, 63, 4654. https://doi.org/10.1021/jo980109d
  66. Kevill, D. N.; D'Souza, M. J. J. Phys. Org. Chem. 2002, 15, 881. https://doi.org/10.1002/poc.569
  67. Koo, I. S.; Lee, I.; Oh, J.; Yang, K.; Bentley, T. W. J. Phy. Org. Chem. 1993, 6, 223. https://doi.org/10.1002/poc.610060405
  68. D'Souza, M. J.; Kevill, D. N.; Bentley, T. W.; Devaney, A. C. J. Org. Chem. 1995, 60, 1632. https://doi.org/10.1021/jo00111a022
  69. Kevill, D. N.; Bond, M. W.; D'Souza, M. J. J. Phys. Org. Chem. 1998, 11, 273. https://doi.org/10.1002/(SICI)1099-1395(199804)11:4<273::AID-POC1>3.0.CO;2-A
  70. Kosower, E. M. J. Am. Chem. Soc. 1958, 80, 3253. https://doi.org/10.1021/ja01546a020
  71. Kosower, E. M. J. Am. Chem. Soc. 1958, 80, 3267. https://doi.org/10.1021/ja01546a022
  72. Frost, A.; Pearson, R. G. Kinetic and Mechanism, 2nd Ed.; Wiley: New York, 1961; Chap 7.
  73. Frisch, M. J. et al. Gaussian 03, Revision B. 05, Gaussian, Inc., Pittsburgh, PA, 2003.
  74. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  75. Montgomery, J. A., Jr.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 2000, 112, 6532. https://doi.org/10.1063/1.481224
  76. Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 106, 5151. https://doi.org/10.1063/1.473558
  77. Cammi, R.; Mennucci, B.; Tomasi, J. J. Phys. Chem. A 2000, 104, 5631. https://doi.org/10.1021/jp000156l

Cited by

  1. Use of Linear Free Energy Relationships (LFERs) to Elucidate the Mechanisms of Reaction of a γ-Methyl-β-alkynyl and an ortho-Substituted Aryl Chloroformate Ester vol.13, pp.12, 2012, https://doi.org/10.3390/ijms13010665
  2. Correlation of the Rates of Solvolyses of 4-Methylthiophene-2-carbonyl Chloride Using the Extended Grunwald-Winstein Equation vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.499
  3. Correlation of the Rates of Solvolysis of Electron-Rich Benzoyl Chloride Using the Extended Grunwald-Wistein Equation vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2697