DOI QR코드

DOI QR Code

Synthesis, and Structural and Thermal Characterizations of Tetrasulfonated Poly(arylene biphenylsulfone ether) Copolymer Ion Conducting Electrolytes

  • Yoo, Dong-Jin (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University) ;
  • Hyun, Seung-Hak (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University) ;
  • Kim, Ae-Rhan (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University) ;
  • Kumar, G. Gnana (Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University) ;
  • Nahm, Kee-Suk (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University)
  • Received : 2011.09.14
  • Accepted : 2011.09.21
  • Published : 2011.11.20

Abstract

High molecular weight tetrasulfonated poly(arylene biphenylsulfone ether) (TsPBPSEH) copolymers containing up to four pendant sulfonate groups per repeat unit were synthesized via aromatic nucleophilic displacement condensation from 4,4'-bis(4-chloro-3-sulfonatophenylsulfonyl)biphenyl-2,2'-disulfonate (SBCSBPD), 4,4'-dichlorodiphenylsulfone (DCDPS) and 4,4'-(hexafluoroisopropylidene)diphenol (6F-BPA). The synthesized copolymers were structurally characterized using $^1H$ NMR and FT-IR techniques. They were analytically pure, amorphous and were readily soluble in a wide range of organic solvents. Electrolyte membranes were successfully cast using the synthesized polymers with various sulfonation levels and N-methyl-2-pyrrolidinone. This new class of polymer membranes exhibited elevated thermal and physical stabilities and reduced swelling at high temperatures. An increase of acidic functional groups in the copolymer yielded high ion exchange capacity and moderate ionic conductivity values even at higher temperatures, which makes them potential ion conducting candidates.

Keywords

References

  1. Sahiner, N.; Ozay, O. React. Funct. Polym. 2011, 71, 607-615. https://doi.org/10.1016/j.reactfunctpolym.2011.03.003
  2. Bae, J. M.; Honma, I.; Murata, M.; Yamamoto, T.; Rikukawa, M.; Ogata, N. Solid State Ionics 2002, 147, 189-194. https://doi.org/10.1016/S0167-2738(02)00011-5
  3. Li, W.; Cui, Z.; Zhou, X.; Zhang, S.; Dai, L.; Xing, W. J. Membr. Sci. 2008, 315, 172-179. https://doi.org/10.1016/j.memsci.2008.02.026
  4. Allcock, H. R.; Hofmann, M. A.; Ambler, C. M.; Lvov, S. N.; Zhou, X. Y.; Chalkov, E.; Weston, J. J. Membr. Sci. 2002, 201, 47- 54. https://doi.org/10.1016/S0376-7388(01)00702-5
  5. Smitha, B.; Sridhar, S.; Khan, A. A. J. Membr. Sci. 2005, 259, 10- 26. https://doi.org/10.1016/j.memsci.2005.01.035
  6. Li, Q.; He, R.; Jensen, J. O.; Bjerrum, N. J. Chem. Mater. 2003, 15, 4896-4915. https://doi.org/10.1021/cm0310519
  7. Fujimoto, C. H.; Hickner, M. A.; Cornelius, C. J.; Loy, D. A. Macromolecules 2005, 38, 5010-5016. https://doi.org/10.1021/ma0482720
  8. Harrison, W. L.; Hickner, M. A.; Kim, Y. S.; McGrath, J. E. Fuel Cells 2005, 5, 201-212. https://doi.org/10.1002/fuce.200400084
  9. Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; Einsla, B. R.; McGrath, J. E. Chem. Rev. 2004, 104, 4587-4612. https://doi.org/10.1021/cr020711a
  10. Meier-Haack, J.; Taeger, A.; Vogel, C.; Schlenstedt, K.; Lenk, W.; Lehmann, D. Sep. Purif. Technol. 2005, 41, 207-220. https://doi.org/10.1016/j.seppur.2004.07.018
  11. Schuster, M.; Kreuer, K. D.; Andersen, H. T.; Maier, J. Macromolecules 2007, 40, 598-607. https://doi.org/10.1021/ma062324z
  12. Kim, D. S.; Shin, K. H.; Park, H. B.; Chung, Y. S.; Nam, S. Y.; Lee, Y. M. J. Membr. Sci. 2006, 278, 428-436. https://doi.org/10.1016/j.memsci.2005.11.028
  13. Wang, L.; Meng, Y. Z.; Wang, S. J.; Shang, X. Y.; Li, L.; Hay, A. S. Macromolecules 2004, 37, 3151-3158. https://doi.org/10.1021/ma035825i
  14. Ghassemi, H.; McGrath, J. E. Polymer 2004, 45, 5847-5854. https://doi.org/10.1016/j.polymer.2004.06.021
  15. Wang, F.; Hickner, M.; Kim, Y. S.; Zawodzinski, T. A.; McGrath, J. E. J. Membr. Sci. 2002, 197, 231-242. https://doi.org/10.1016/S0376-7388(01)00620-2
  16. Yoo, D. J.; Hyun, S. H.; Kim, A. R.; Kumar, G. G.; Nahm, K. S. Polym. Int. 2011, 60, 85-92. https://doi.org/10.1002/pi.2914
  17. Ueda, M.; Toyota, H.; Ochi, T.; Sugiyama, S.; Yonetake, K.; Masuko, T.; Teramoto, T. J. Polym. Sci. Part A: Polym. Chem. 1993, 31, 853-858. https://doi.org/10.1002/pola.1993.080310402
  18. Kumar, G. G.; Kim, A. R.; Nahm, K. S.; Yoo, D. J.; Elizabeth, R. J. Power Sources 2010, 195, 5922-5928. https://doi.org/10.1016/j.jpowsour.2009.11.021
  19. Sankir, M.; Bhanu, V. A.; Harrison, W. L.; Ghassemi, H.; Wiles, K. B.; Glass, T. E.; Brink, A. E.; Brink, M. H.; McGrath, J. E. J. Appl. Polym. Sci. 2006, 100, 4595-4602. https://doi.org/10.1002/app.22803
  20. Baxter, I.; Ben-Haida, A.; Colquhoun, H. M.; Hodge, P.; Kohnke, F. H.; Williams, D. J. Chem. Eur. J. 2000, 6, 4285-4296. https://doi.org/10.1002/1521-3765(20001201)6:23<4285::AID-CHEM4285>3.3.CO;2-4
  21. Yan, L.; Li, Y. S.; Xiang, C. B.; Xianda, S. J. Membr. Sci. 2006, 276, 162-167. https://doi.org/10.1016/j.memsci.2005.09.044
  22. Nolte, R.; Ledjeff, K.; Bauer, M.; Mulhaupt, R. J. Membr. Sci. 1993, 83, 211-220. https://doi.org/10.1016/0376-7388(93)85268-2
  23. Lufrano, F.; Squadrito, G.; Patti, A.; Passalacqua, E. J. Appl. Polym. Sci. 2000, 77, 1250-1257. https://doi.org/10.1002/1097-4628(20000808)77:6<1250::AID-APP9>3.0.CO;2-R
  24. Chikasige, Y.; Chikyu, Y.; Miyatake, K.; Watanabe, M. Macromolecules 2005, 38, 7121-7126. https://doi.org/10.1021/ma050856u
  25. Arnett, N. Y.; Harrison, W. L.; Badami, A. S.; Roy, A.; Lane, O.; Cromer, F.; Dong, L.; McGrath, J. E. J. Power Sources 2007, 172, 20-29. https://doi.org/10.1016/j.jpowsour.2007.04.051
  26. Zaidi, S. M. J.; Mikhailenko, S. D.; Robertson, G. P.; Guiver, M. D.; Kaliaguine, S. J. Membr. Sci. 2000, 173, 17-34. https://doi.org/10.1016/S0376-7388(00)00345-8
  27. Kopitzke, R. W.; Linkous, C. A. J. Electrochem. Soc. 2002, 147(5), 1677-1681.
  28. Yang, S. J.; Jang, W.; Lee, C.; Shul, Y. G.; Han, H. J. Polym. Sci. Part B: Polym Physics 2005, 43, 1455-1464. https://doi.org/10.1002/polb.20448
  29. Kim, Y. S.; Hickner, M. A.; Dong, L.; Pivovar, B. S.; McGrath, J. E. J. Membr. Sci. 2004, 243, 317-326. https://doi.org/10.1016/j.memsci.2004.06.035

Cited by

  1. Tetrasulfonated Poly(arylene biphenylsulfone ether) Block Copolymer and Its Composite Membrane Containing Highly Sulfonated Blocks vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.375
  2. Highly Sulfonated Poly(Arylene Biphenylsulfone Ketone) Block Copolymers Prepared via Post-Sulfonation for Proton Conducting Electrolyte Membranes vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1763
  3. Synthesis and properties of sulfonated biphenyl poly(ether sulfone) and its mixed-matrix membranes containing carbon nanotubes for gas separation vol.134, pp.29, 2017, https://doi.org/10.1002/app.44995
  4. Constructing Proton-conducting Channels within Sulfonated(Poly Arylene Ether Ketone) Using Sulfonated Graphene Oxide: A Nano-Hybrid Membrane for Proton Exchange Membrane Fuel Cells vol.39, pp.6, 2018, https://doi.org/10.1002/bkcs.11459
  5. Ionic conducting membranes based on new sulfonated poly(arylene ether ketone)s for fuel cell applications vol.55, pp.10, 2017, https://doi.org/10.1002/polb.24330