DOI QR코드

DOI QR Code

Performance of Solid Oxide Fuel Cell with Gradient-structured Thin-film Cathode Composed of Pulsed-laser-deposited Lanthanum Strontium Manganite-Yttria-stabilized Zirconia Composite

PLD 공정으로 제조된 LSM-YSZ 나노복합체층이 포함된 경사구조 박막 공기극을 적용한 SOFC의 성능 분석

  • Myung, Doo-Hwan (High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology) ;
  • Hong, Jong-Ill (Department of Materials Science and Engineering, Yonsei University) ;
  • Hwang, Jae-Yeon (High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology) ;
  • Lee, Jong-Ho (High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology) ;
  • Lee, Hae-Weon (High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology) ;
  • Kim, Byung-Kook (High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology) ;
  • Cho, Sung-Gurl (Department of Semiconductors, Gyeongsang National University) ;
  • Son, Ji-Won (High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology)
  • 명두환 (한국과학기술연구원 고온에너지재료연구센터) ;
  • 홍종일 (연세대학교 신소재공학과) ;
  • 황재연 (한국과학기술연구원 고온에너지재료연구센터) ;
  • 이종호 (한국과학기술연구원 고온에너지재료연구센터) ;
  • 이해원 (한국과학기술연구원 고온에너지재료연구센터) ;
  • 김병국 (한국과학기술연구원 고온에너지재료연구센터) ;
  • 조성걸 (경상대학교 반도체공학과) ;
  • 손지원 (한국과학기술연구원 고온에너지재료연구센터)
  • Received : 2011.09.18
  • Accepted : 2011.09.28
  • Published : 2011.11.30

Abstract

The effect of the application of lanthanum strontrium manganite and yttria-stabilized zirconia (LSM-YSZ) nano-composite fabricated by pulsed laser deposition (PLD) as a cathode of solid oxide fuel cell (SOFC) is studied. A gradient-structure thin-film cathode composed of 1 micron-thick LSM-YSZ deposited at an ambient pressure ($P_{amb}$) of 200 mTorr; 2 micron-thick LSM-YSZ deposited at a $P_{amb}$ of 300 mTorr; and 2 micron-thick lanthanum strontium cobaltite (LSC) current collecting layer was fabricated on an anode-supported SOFC with an ~8 micron-thick YSZ electrolyte. In comparison with a 1 micron-thick nano-structure single-phase LSM cathode fabricated by PLD, it was obviously effective to increase triple phase boundaries (TPB) over the whole thickness of the cathode layer by employing the composite and increasing the physical thickness of the cathode. Both polarization and ohmic resistances of the cell were significantly reduced and the power output of the cell was improved by a factor of 1.6.

Keywords

References

  1. H.-S. Noh, J.-W. Son, H. Lee, H.-R. Kim, J.-H. Lee, and H.-W. Lee, "Thin Film $(La_{0.7}Sr_{0.3})_{0.95}MnO_{3-{\delta}}$ Fabricated by Pulsed Laser Deposition and Its Application as Solid Oxide Fuel Cell Cathode for Low Temperature Operation," J. Kor. Ceram. Soc., 47 [1] 75-81 (2010). https://doi.org/10.4191/KCERS.2010.47.1.075
  2. F. Tietz, "Thermal Expansion of SOFC Materials," Ionics, 5 129-39 (1999). https://doi.org/10.1007/BF02375916
  3. S. P. Jiang, "Development of Lanthanum Strontium Manganite Perovskite Cathode Materials of Solid Oxide Fuel Cells: A Review," J. Mater. Sci., 43 6799-833 (2008). https://doi.org/10.1007/s10853-008-2966-6
  4. E. Koep, C. Jin, M. Haluska, R. Das, R. Narayan, K. Sandhage, R. Snyder, and M. Liu, "Microstructure and Electrochemical Properties of Cathode Materials for SOFC Prepared via Pulsed Laser Deposition," J. Power Sources, 161 250-5 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.060
  5. H. Jung, K. Hong, H. Jung, H. Kim, H. Kim, J. Son, J. Kim, H. Lee, and J. Lee, "SOFCs with Sc-doped Zirconia Electrolyte and Co-containing Perovskite Cathodes," J. Electrochem. Soc., 154 [5], B480-B5 (2007). https://doi.org/10.1149/1.2712131
  6. N. Q. Minh, "Solid Oxide Fuel Cells for Power Generation and Hydrogen Production," J. Kor. Ceram. Soc., 47 [1] 1-7 (2010). https://doi.org/10.4191/KCERS.2010.47.1.001
  7. C. Peters, A. Weber, and E. Ivers-Tiffee, "Nanoscaled $(La_{0.5}Sr_{0.5})CoO_{3-{\delta}}$ Thin Film Cathodes for SOFC Application at $500{^{\circ}C}," J. Electrochem. Soc., 155 [7] B730-B7 (2008). https://doi.org/10.1149/1.2909552
  8. H.-S. Noh, J.-W. Son, H. Lee, J.-S. Park, H.-W. Lee, and J.-H. Lee, "Direct Applicability of $La_{0.6}Sr_{0.4})CoO_{3-{\delta}}$ Thin Film Cathode to Yttria Stabilized Zirconia Electrolytes at $T{\leq}650{^{\circ}C}$," Fuel Cells, 10 [6] 1057-65 (2010). https://doi.org/10.1002/fuce.201000009
  9. L. Dieterle, D. Bach, R. Schneider, H. Stormer, D. Gerthsen, U. Guntow, E. Ivers-Tiffee, A. Weber, C. Peters, and H. Yokokawa, "Structural and Chemical Properties of Nanocrystalline $La_{0.5}Sr_{0.5}CoO_{3-{\delta}}$ Layers on Yttria-stabilized Zirconia Analyzed by Transmission Electron Microscopy," J. Mater. Sci., 43 3135-43 (2008). https://doi.org/10.1007/s10853-008-2502-8
  10. J.-J. Choi, S.-H. Oh, H.-S. Noh, H.-R. Kim, J.-W. Son, D.-S. Park, J.-H. Choi, J. Ryu, B.-D. Hahn, W.-H. Yoon, and H.-W. Lee, "Low Temperature Fabrication of Nano-structured Porous LSM-YSZ Composite Cathode Film by Aerosol Deposition," J. Alloys Compounds, 509 [5] 2627-30 (2011). https://doi.org/10.1016/j.jallcom.2010.11.169
  11. H.-S. Noh, J.-S. Park, J.-W. Son, H. Lee, J.-H. Lee, and H.-W. Lee, "Physical and Microstructural Properties of NiO-and Ni-YSZ Composite Thin Films Fabricated by Pulsed Laser Deposition at $T{\leq}700{^{\circ}C}$," J. Am. Ceram. Soc., 92 [12] 3059-64 (2009). https://doi.org/10.1111/j.1551-2916.2009.03362.x
  12. H.-S. Noh, J.-W. Son, H. Lee, H.-I. Ji, J.-H. Lee, and H.-W. Lee, "Suppression of Ni Agglomeration in PLD Fabricated Ni-YSZ Composite for Surface Modification of SOFC Anode," J. Eur. Ceram. Soc., 30 [16] 3415-23 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.07.035
  13. D.-H. Myung, J. Hwang, J. Hong, H.-W. Lee, B.-K. Kim, J.-H. Lee, and J.-W. Son, "Pulsed Laser Deposition of $La_{0.6}Sr_{0.4}CoO_{3-{\delta}-Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$ Nano-composite and Its Application to Gradientstructured Thin-film Cathode of SOFC," J. Electrochem. Soc., 158 [8] B1000-06 (2011). https://doi.org/10.1149/1.3599925
  14. K. Hayashi, O. Yamamoto, Y. Nishigaki, and H. Minoura, "Sputtered $La_{0.5}Sr_{0.5}MnO_{3}$-Yttria Stabilized Zirconia Composite Film Electrodes for SOFC," Solid State Ionics, 98 [1-2] 49-55 (1997). https://doi.org/10.1016/S0167-2738(97)00098-2
  15. H.-S. Noh, H. Lee, H.-I. Ji, H.-W. Lee, J.-H. Lee, and J.-W. Son, "Limitation of Thickness Increment of Lanthanum Strontium Cobaltite Cathode Fabricated by Pulsed Laser Deposition," J. Electrochem. Soc., 158 [1] B1-B4 (2011). https://doi.org/10.1149/1.3504214
  16. T. Tsai and S. A. Barnett, "Sputter Deposition of Cermet Fuel Electrodes for Solid Oxide Fuel Cells," J. Vac. Sci. Technol. A, 13 [3] 1073-77 (1995). https://doi.org/10.1116/1.579588
  17. H.-G. Jung, Y.-K. Sun, H.-Y. Jung, J.-S. Park, H.-R. Kim, G.-H. Kim, H.-W. Lee, and J.-H. Lee, "Investigation of Anode-Supported SOFC with Cobalt-containing Cathode and GDC Interlayer," Solid State Ionics, 179 [27-32] 1535-39 (2008). https://doi.org/10.1016/j.ssi.2008.01.063

Cited by

  1. Suppressing Lateral Conduction Loss of Thin-film Cathode by Inserting a Denser Bridging Layer vol.52, pp.5, 2015, https://doi.org/10.4191/kcers.2015.52.5.304
  2. Electrical Characterization of Ultrathin Film Electrolytes for Micro-SOFCs vol.49, pp.5, 2012, https://doi.org/10.4191/kcers.2012.49.5.404