DOI QR코드

DOI QR Code

Analysis of Confinement Effectiveness for FRP Confined Concrete Columns

FRP로 구속된 콘크리트 압축부재의 구속효과 분석

  • Received : 2010.09.07
  • Accepted : 2010.11.17
  • Published : 2011.02.28

Abstract

Concrete columns strengthening effect due to FRP (Fiber Reinforced Polymer) confinement depends on the elastic modulus of the FRP. This study analyzes the retrofitting effect of FRP confinements according to elastic modulus of FRPs using the existing data and suggests a practical model to assess the strengthening effect. This study subdivides the FRP elastic modulus into three parts based on normal concrete and steel elastic modulus. The slope and the y-axis intersection seem to increase with increasing FRP elastic modulus. In addition, the strengthening effect does not develop up to some amount of FRP confinement having relatively smaller elastic modulus than the compressive elastic modulus of concrete. In this case, a linear model to assess the strengthening effect is hard to be used. Thus, this study suggests that the FRP jackets having 2 times larger elastic modulus than that of concrete are recommended to be used for retrofit of concrete and that a linear model can be applied for the case. The suggested model shows nearly the same result regardless to the restraint of the y-axis intersection. This has been observed at the model of steel confinement and, thus, is a reliable result.

FRP 자켓으로 콘크리트를 보강하는 경우 FRP의 탄성계수에 따라 강도증진효과가 상이하게 나타난다. 본 논문에서는 기존의 데이터를 사용하여 FRP 보강재의 탄성계수에 따른 보강효과를 분석하고, 실용적으로 사용할 수 있는 강도증진 추정모델을 제시하였다. FRP의 탄성계수는 일반 콘크리트의 압축탄성계수와 강재의 탄성계수를 기준으로 세 구간으로 구분하여 비교하였다. FRP의 탄성계수가 증가할수록 추정모델의 기울기 및 y-절편이 증가하는 것을 알 수 있었다. 또한, FRP의 탄성계수가 콘크리트의 압축탄성계수보다 작은 경우 FRP의 보강량이 작으며 보강효과가 없는 것으로 나타났으며, 이러한 경우 선형적인 모델을 사용하기 어렵다. 따라서 본 연구에서는 FRP의 탄성계수가 콘크리트 압축탄성계수보다 약 2배 큰 것만을 사용하는 경우의 보강효과 추정모델을 제시하였다. 본 연구에서 제시한 모델은 y-절편의 구속조건 여부와 상관없이 거의 동일한 결과를 보여 주었으며, 이러한 특징은 강재보강에서도 발견되는 것으로 합리적인 결과라고 판단할 수 있다.

Keywords

References

  1. 최은수, 안동준(2009) 콘크리트 보강강판 및 GFRP 튜브의 구속 효과 분석 및 평가, 한국강구조학회논문집, 한국강구조학회, 제21권 제4호, pp. 1-8.
  2. Ahmad, S.M. and Shah, S.P. (1982) Stress-strain curves of concrete confined by spiral reinforcement, ACI Structural Journal, Vol. 79, No. 6, pp. 484-490.
  3. Chai, Y.H., Priestly, M.J.N., and Seible, F. (1991) Seismic retrofit of circular bridge columns for enhanced flexural performance, ACI Structural Journal, Vol. 88, No. 5, pp. 572-584.
  4. Choi, E., Park, J., Nam, T.H., and Yoon, S.J. (2009) A new steel jacketing method for RC columns, Magazine of Concrete Research, Vol. 61, No. 10, pp. 787-796. https://doi.org/10.1680/macr.2008.61.10.787
  5. Harajli, M.H. and Dagher, F. (2008) Seismic strengthening of bondcritical regions in rectangular reinforced concrete columns using fiber-reinforced polymer wraps, ACI Structural Journal, Vol. 105, No. 1, pp. 68-77.
  6. Karbhari, V.M. and Gao, Y. (1997) Composite jacketed concrete under uniaxial compression-verification of simple design equation, Journal of Material in Civil Engineering, Vol. 9, No. 4, pp. 185-193. https://doi.org/10.1061/(ASCE)0899-1561(1997)9:4(185)
  7. Lam, L. and Teng, J.G. (2002) Strength models for fiber-reinforced plastic-confined concrete, Journal of Structural Engineering, Vol. 128, No. 5, pp. 612-623. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:5(612)
  8. Mander, J.B., Priestley, M.J.N., and Park, R. (1988) Theoretical stress-strain model for confined concrete, Journal of Structural Engineering, Vol. 114, No. 8, pp. 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  9. Miyauchi, K., Nishibayashi, S., and Inoue, S. (1997) Estimation of strengthening effects with carbon fiber sheet fro concret columns, Non-Metallic(FRP) Reinforcement for Concrete Structures, Proc., 3rd Int, Symposium, Japan concrete Institute, Sapporo, Japan, Vol. 1, pp. 217-224.
  10. Mirmiran, A., Shahawy, M., Samaan, M., and El Echary, H. (1998) Effect of column parameters on FRP-confined concrete, Journal of Composite and Construction, Vol. 2, No. 4, pp. 175-185. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175)
  11. Pantelides, C.P., Alameddine, F., Sardo, T., and Imbsen, R. (2004) Seismic retrofit of state street bridge on interstate 80, Journal of Bride Engineering, ASCE, Vol. 9, No. 4, pp. 333-342. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:4(333)
  12. Richart, F.E., Brandtzaeg, A., and Brown, R.L. (1928) A study of the failure of concrete under combined stresses, Bulletin No. 185, Univ. of Illinois, Engineering Experimental Station, Urbana, Ill.
  13. Richart, F.E., Brandtzaeg, A., and Brown, R.L. (1929) The failure of plain and spirally reinforced concrete in compression, Bulletin No. 185, Univ. of Illinois, Engineering Experimental Station, Urbana, Ill.
  14. Spoelstra, M. and Monti, G. (1999). FRP-Confined concrete model, Journal of Composite for Construction, Vol. 3, No. 3, pp. 143- 150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143)