DOI QR코드

DOI QR Code

A Highly Efficient and Fast Method for the Synthesis of Biscoumarins Using Tetrabutylammonium Hexatungstate [TBA]2[W6O19] as Green and Reusable Heterogeneous Catalyst

  • Received : 2011.08.18
  • Accepted : 2011.10.10
  • Published : 2011.12.20

Abstract

A novel catalytic synthesis of biscoumarins from 4-hydroxycoumarin and aromatic aldehydes has been developed. The reaction occurs in ethanol in the presence of tetrabutylammonium hexatungstate $[TBA]_2[W_6O_{19}]$ as catalyst to give the corresponding products in high yields. This new approach has short reaction times, clean reaction profiles, and simple experimental and workup procedures. Moreover, the catalyst can be easily recovered by filtration and used at least three times with only slight reduction in its catalytic activity.

Keywords

References

  1. Lee, J. H.; Bang, H. B.; Han, S. Y.; Jun, J. G. Tetrahedron Lett. 2007, 48, 2889. https://doi.org/10.1016/j.tetlet.2007.02.088
  2. Manian, R. D. R. S.; Jayashankaran, J.; Raghunathan, R. A. Tetrahedron Lett. 2007, 48, 1385. https://doi.org/10.1016/j.tetlet.2006.12.106
  3. Zhao, H.; Neamati, N.; Hong, H.; Mazumder, A.; Wang, S.; Sunder, S.; Milne, G. W. A.; Pommier, Y.; Burke, T. R. J. Med. Chem. 1997, 40, 242. https://doi.org/10.1021/jm960450v
  4. Appendino, G.; Cravotto, G.; Tagliapietra, S.; Ferraro, S.; Nano, G. M.; Palmisano, G. Helv. Chim. Acta. 1991, 74, 1451. https://doi.org/10.1002/hlca.19910740708
  5. Manolov. I.; Moessmer, C. M.; Danchev, N. D. Eur. J. Med. Chem. 2006, 41, 882. https://doi.org/10.1016/j.ejmech.2006.03.007
  6. Khan, K. M.; Iqbal, S.; Lodhi, M. A.; Maharvi, G. M.; Zia-u-Allah Choudhary, M. I.; Rahman, A. U.; Perveen, S. Bioorg. Med. Chem. 2004, 12, 1963. https://doi.org/10.1016/j.bmc.2004.01.010
  7. Wang, J.; Shi, D. Q.; Zhuang, Q. Y.; Wang, X. S.; Tu, S. J. Chin. J. Org. Chem. 2005, 25, 926.
  8. Kidwi, M.; Bansal, V.; Mothsra, P.; Saxena, S.; Somvanshi, R. K.; Dey, S.; Singh, T. P. J. Mol. Catal. A:Chem. 2007, 268, 76. https://doi.org/10.1016/j.molcata.2006.11.054
  9. Khurana, J. M.; Kumar, S. Tetrahedron Lett. 2009, 50, 4125. https://doi.org/10.1016/j.tetlet.2009.04.125
  10. Qadir, S.; Ahmad Dar, A.; Zaman Khan, Kh. Syn. Commun. 2008, 38, 3490. https://doi.org/10.1080/00397910802162942
  11. Gong, G. X.; Zhou, J. F.; An, L. T.; Duan, X. L.; Ji, S. J. Syn. Commun. 2009, 39, 497. https://doi.org/10.1080/00397910802398272
  12. Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer-Verlag: Berlin, 1983.
  13. Mizuno, N.; Misono, M. Chem. Rev. 1998, 98, 199. https://doi.org/10.1021/cr960401q
  14. Sadakane, M.; Steckhan, E. Chem. Rev. 1998, 98, 219. https://doi.org/10.1021/cr960403a
  15. Coronado, E.; Gomez-Garcia, C. J. Chem. Rev. 1998, 98, 273. https://doi.org/10.1021/cr970471c
  16. Katsoulis, D. E. Chem. Rev. 1998, 98, 359. https://doi.org/10.1021/cr960398a
  17. Kozhevnikov, I. V. In Catalysts for Fine Chemical Synthesis, Catalysis by Polyoxometalates 2, Derouane, E., Ed.; Wiley: New York, 2002.
  18. Okuhara, T.; Mizuno, N.; Misono, M. Adv. Catal. 1996, 41, 113. https://doi.org/10.1016/S0360-0564(08)60041-3
  19. Pope, M. T. In Progress in Inorganic Chemistry; Lippard, S. J., Ed.; Wiley: New York, 1991, 39, 181. https://doi.org/10.1002/9780470166406.ch4
  20. Hill, C. L. J. Mol. Catal. A: Chem. 1996, 114, 1. https://doi.org/10.1016/S1381-1169(96)00338-X
  21. Hill, C. L. Chem. Rev. 1998, 98, 1. https://doi.org/10.1021/cr960395y
  22. Gouzerh, P.; Proust, A. Chem. Rev. 1998, 98, 77. https://doi.org/10.1021/cr960393d
  23. Strong, J. B.; Yap, G. P. A.; Ostrander, R.; Liable-Sands, L. M.; Rheingold, A. L.; Thouvenot, R.; Gouzerh, P.; Maatta E. A. J. Am. Chem. Chem. 2000, 122, 639. https://doi.org/10.1021/ja9927974
  24. Davoodnia, A.; Allameh, S.; Fakhari, A. R.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2010, 21, 550. https://doi.org/10.1016/j.cclet.2010.01.032
  25. Zeinali-Dastmalbaf, M.; Davoodnia, A.; Heravi, M. M.; Tavakoli- Hoseini, N.; Khojastehnezhad, A.; Zamani, H. A. Bull. Korean Chem. Soc. 2011, 32, 656. https://doi.org/10.5012/bkcs.2011.32.2.656
  26. Davoodnia, A.; Tavakoli-Nishaburi, A.; Tavakoli-Hoseini, N. Bull. Korean Chem. Soc. 2011, 32, 635. https://doi.org/10.5012/bkcs.2011.32.2.635
  27. Davoodnia, A.; Khojastehnezhad, A.; Tavakoli-Hoseini, N. Bull. Korean Chem. Soc. 2011, 32, 2243. https://doi.org/10.5012/bkcs.2011.32.7.2243
  28. Fournier, M. In Inorganic Synthesis; Ginsberg, A. P., Ed.; John Wiley: New York, 1990, 27, 80.
  29. Chary, M. V.; Keerthysri, N. C.; Vupallapati, S. V. N.; Lingaiah, N.; Kantevari, S. Catal. Commun. 2008, 9, 2013. https://doi.org/10.1016/j.catcom.2008.03.037
  30. Reinheimer, E. W.; Fourmigue, M.; Dunbar, K. R. J. Chem. Crystallogr. 2009, 39, 723. https://doi.org/10.1007/s10870-009-9521-4

Cited by

  1. Pd(0) NPs: a novel and reusable catalyst for the synthesis of bis(heterocyclyl)methanes in water vol.2, pp.16, 2012, https://doi.org/10.1039/c2ra20445b
  2. An Efficient and Environmentally Friendly Procedure for the Synthesis of Some Novel 8-Benzylidene-4-phenyl-3,4,5,6,7,8-hexahydro-1H-quinazolin-2-ones/thiones using Tetrabutylammonium Hexatungstate as a Reusable Heterogeneous Catalyst under Solvent-Free Conditions vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3289
  3. ] as a Reusable Heterogeneous Catalyst vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1508
  4. Green synthesis of biscoumarin derivatives catalyzed by recyclable CuO–CeO2 nanocomposite catalyst in water vol.41, pp.8, 2015, https://doi.org/10.1007/s11164-014-1695-5
  5. Ethylene glycol promoted catalyst-free pseudo three-component green synthesis of bis(coumarin)s and bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)s vol.20, pp.3, 2016, https://doi.org/10.1007/s11030-016-9673-z
  6. Neat synthesis of octahydroxanthene-1,8-diones, catalyzed by silicotungstic acid as an efficient reusable inorganic catalyst vol.86, pp.5, 2016, https://doi.org/10.1134/S107036321605025X
  7. Efficient synthesis of bis(indolyl)methanes, bispyrazoles and biscoumarins using 4-sulfophthalic acid vol.43, pp.3, 2017, https://doi.org/10.1007/s11164-016-2720-7
  8. Cobalt(II) Chloride Hexahydrate as an Efficient and Inexpensive Catalyst for the Preparation of Biscoumarin Derivatives vol.2014, pp.2314-7571, 2014, https://doi.org/10.1155/2014/340786
  9. Recent Advances in the Synthesis of Biscoumarin Derivatives vol.65, pp.4, 2018, https://doi.org/10.1002/jccs.201700363
  10. Polymer Support Immobilized Acidic Ionic Liquid: Preparation and Its Application as Catalyst in the Synthesis of Hantzsch 1,4-Dihydropyridines vol.33, pp.7, 2011, https://doi.org/10.5012/bkcs.2012.33.7.2140
  11. Preparation, Characterization and First Application of Aerosil Silica Supported Acidic Ionic Liquid as a Reusable Heterogeneous Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones vol.33, pp.8, 2011, https://doi.org/10.5012/bkcs.2012.33.8.2724
  12. A Convenient, Eco-friendly, and Efficient Method for Synthesis of 3,3'-Arylmethylene-bis-4-hydroxycoumarins "On-water" vol.33, pp.12, 2011, https://doi.org/10.5012/bkcs.2012.33.12.4239
  13. Synthesis of novel pyrazolylbiscoumarin derivatives using FeTUD-1 as a mesoporous solid acid catalyst vol.3, pp.47, 2011, https://doi.org/10.1039/c3ra43913e
  14. Catalytic performance of a Keplerate-type, giant-ball nanoporous isopolyoxomolybdate as a highly efficient recyclable catalyst for the synthesis of biscoumarins vol.71, pp.3, 2011, https://doi.org/10.1515/znb-2015-0151
  15. Another application of newly prepared Brønsted-acidic ionic liquids as highly efficient reusable catalysts for neat synthesis of amidoalkyl naphthols vol.3, pp.1, 2011, https://doi.org/10.1080/23312009.2017.1312675
  16. Green synthesis of bis‐coumarin derivatives using Fe(SD) 3 as a catalyst and investigation of their biological activities vol.67, pp.1, 2011, https://doi.org/10.1002/jccs.201800444
  17. Melamine: An Efficient Promoter for Some of the Multi-component Reactions vol.41, pp.1, 2011, https://doi.org/10.1080/10406638.2019.1570949
  18. A review on key aspects of wet granulation process for continuous pharmaceutical manufacturing of solid dosage oral formulations vol.15, pp.2, 2011, https://doi.org/10.1016/j.arabjc.2021.103598
  19. A review on key aspects of wet granulation process for continuous pharmaceutical manufacturing of solid dosage oral formulations vol.15, pp.2, 2011, https://doi.org/10.1016/j.arabjc.2021.103598