DOI QR코드

DOI QR Code

A Chebyshev Collocation Method for Stiff Initial Value Problems and Its Stability

  • Kim, Sang-Dong (Department of Mathematics, Kyungpook National University) ;
  • Kwon, Jong-Kyum (Department of Mathematics, Kyungpook National University) ;
  • Piao, Xiangfan (Department of Mathematics, Kyungpook National University) ;
  • Kim, Phil-Su (Department of Mathematics, Kyungpook National University)
  • Received : 2011.08.03
  • Accepted : 2011.09.27
  • Published : 2011.11.23

Abstract

The Chebyshev collocation method in [21] to solve stiff initial-value problems is generalized by using arbitrary degrees of interpolation polynomials and arbitrary collocation points. The convergence of this generalized Chebyshev collocation method is shown to be independent of the chosen collocation points. It is observed how the stability region does depend on collocation points. In particular, A-stability is shown by taking the mid points of nodes as collocation points.

Keywords

References

  1. R. R. Ahmad, N. Yaacob, A. H. Mohd Murid, Explicit methods in solving stiff ordinary differential equations, Int. J. Comput. Math., 81(2004), 1407-1415. https://doi.org/10.1080/00207160410001661744
  2. J. Alverez, J. Rojo, An improved class of generalized Runge-Kutta methods for stiff problems. Part I: The scalar case, Appl. Math. Comput., 130(2002), 537-560. https://doi.org/10.1016/S0096-3003(01)00115-1
  3. J. Alverez, J. Rojo, An improved class of generalized Runge-Kutta methods for stiff problems. Part II: the separated system case, Appl. Math. Comput., 159(2004), 717-758. https://doi.org/10.1016/j.amc.2003.09.023
  4. K. E. Atkinson, An Introduction to Numerical Analysis, 2nd ed., John Wiley & Sons, NewYork, 1989.
  5. P. N. Brown, G. D. Byrne, A. C. Hindmarsh, VODE: A variable coefficient ODE solver, SIAM J. Sci. Statist. Comput., 10(1989), 1038-1051. https://doi.org/10.1137/0910062
  6. J. C. Butcher, Implicit Runge-Kutta processes, Math. Comput., 18(1964), 50-64. https://doi.org/10.1090/S0025-5718-1964-0159424-9
  7. J. C. Butcher, Integration processes based on Radau quadrature formulas, Math. Comput., 18(1964), 233-244. https://doi.org/10.1090/S0025-5718-1964-0165693-1
  8. J. C. Butcher, G.Wanner, Runge-Kutta methods: some historical notes, Appl. Numer. Math., 22(1996), 113-151. https://doi.org/10.1016/S0168-9274(96)00048-7
  9. J. R. Cash, On the integration of stiff systems of ODE's using extended backward differential formulae, Numer. Math., 34(1980), 235-246. https://doi.org/10.1007/BF01396701
  10. J. R. Cash, S. Considine, An MEBDF code for stiff initial value problems, ACM Trans. Math. Software, 18(2)(1992), 142-155. https://doi.org/10.1145/146847.146922
  11. C. F. Curtiss, J. O. Hirschfelder, Integration of stiff equations, Proc. Natl. Acad. Sci., 38(1952), 235-243. https://doi.org/10.1073/pnas.38.3.235
  12. G. Dahlquist, A special stability problem for linear multistep methods, BIT, 3(1963), 27-43. https://doi.org/10.1007/BF01963532
  13. C. Fredebeul, A-BDF: a generalization of the backward differentiation formulae, SIAM J. Numer. Anal., 35(5)(1998), 1917-1938. https://doi.org/10.1137/S0036142996306217
  14. N. Guzel, M. Bayram, On the numerical solution of stiff system, Appl. Math. Comput., 170(2005), 230-236. https://doi.org/10.1016/j.amc.2004.11.035
  15. A. Hadi Alim and A. Khader Error control policy for initial value problems with discontinuities and delays, Kyungpook Math. J., 48(2008), 665-684. https://doi.org/10.5666/KMJ.2008.48.4.665
  16. E. Hairer, S. P. Norsett, G. Wanner, Solving ordinary differential equations I, Nonstiff problems, Springer Series in Computational Mathematics, Springer 1996.
  17. E. Hairer, G.Wanner, Solving ordinary differential equations. II. Stiff and differential-algebraic problems, Springer Series in Computational Mathematics, Springer 1996.
  18. E. Hairer, G.Wanner, Stiff differential equations solved by Radau methods, J. Comput. Appl. Math., 111(1999), 93-111. https://doi.org/10.1016/S0377-0427(99)00134-X
  19. A. C. Hindmarsh, ODEPACK, A systematized collection of ODE solvers, in: R.S. Stepleman et al., eds, Scientific Computing, North-Holland, Amsterdam, (1983), 55-64.
  20. L. G. Ixaru, G. V. Berghe, H. D. Meyer, Exponentially fitted variable two-step BDF algorithm for rst order ODEs, Comput. Phys. Comm., 150(2003), 116-128. https://doi.org/10.1016/S0010-4655(02)00676-8
  21. H. Ramos, J. Vigo-Aguiar, A fourth-order Runge-Kutta method based on BDF-type Chebyshev approximations, J. Comput. Appl. Math., 204(2007), 124-136. https://doi.org/10.1016/j.cam.2006.04.033
  22. H. Ramos, J. Vigo-Aguiar, An almost L-stable BDF-type method for the numerical solution of stiff ODEs arising from the method of lines, Numer. Methods Partial Differential equations, 23(2007), 1110-1121. https://doi.org/10.1002/num.20212
  23. H. Ramos, A non-standard explicit integration scheme for initial value problems, Appl. Math. Comput., 189(2007), 710-718. https://doi.org/10.1016/j.amc.2006.11.134
  24. J. Vigo-Aguiar, H. Ramos, A family of A-stable Runge-Kutta collocation methods of higher order for initial-value problems, IMA J. Numer. Anal., 27(2007), 798-817. https://doi.org/10.1093/imanum/drl040
  25. J. Vigo-Aguiar, J. Martn-Vaquero, H. Ramos, Exponential tting BDF-Runge-Kutta algorithms, Comput. Phys. Comm., 178(2008), 15-34. https://doi.org/10.1016/j.cpc.2007.07.007
  26. H. Ramos, R. Carcia-Rubio, Analysis of a Chebyshev-based backward differentiation formulae and realtion with Runge-Kutta collocation methods, Inter. J. Comp. Math., to appear.
  27. M. M. Stabrowski, An efficient algorithm for solving stiff ordinary differential equations, Simul. Pract. Theory, 5(1997), 333-344. https://doi.org/10.1016/S0928-4869(96)00011-0
  28. X. Y. Wu, J. L. Xia, Two low accuracy methods for stiff systems, Appl. Math. Comput., 123(2001), 141-153. https://doi.org/10.1016/S0096-3003(00)00010-2

Cited by

  1. Simple ECEM Algorithms Using Function Values Only vol.53, pp.4, 2013, https://doi.org/10.5666/KMJ.2013.53.4.573
  2. A technique for the numerical solution of initial-value problems based on a class of Birkhoff-type interpolation method vol.244, 2013, https://doi.org/10.1016/j.cam.2012.11.013
  3. An error embedded method based on generalized Chebyshev polynomials vol.306, 2016, https://doi.org/10.1016/j.jcp.2015.11.021