DOI QR코드

DOI QR Code

Evaluation and Selection of MEMS-Based Inertial Sensor to Implement Inertial Measurement Unit for a Small-Sized Vessel

소형 선박용 관성측정장치 개발을 위한 MEMS 기반 관성 센서의 평가와 선정

  • Yim, Jeong-Bin (Division of Maritime Transportation System, College of Maritime Sciences, Mokpo Maritime University)
  • 임정빈 (목포해양대학교 해사대학 해상운송시스템학부)
  • Received : 2011.10.31
  • Accepted : 2011.12.06
  • Published : 2011.12.31

Abstract

This paper describes the evaluation and selection of MEMS(Micro-Elect Mechanical System) based inertial sensor to fit to implement the Inertial Measurement Unit(IMU) for a small-sized vessel at sea. At first, the error model and the noise model of the inertial sensors are defined with Euler's equations and then, the inertial sensor evaluation is carried out with Allan Variance techniques and Monte Carlo simulation. As evaluation results for the five sensors, ADIS16405, SAR10Z, SAR100Grade100, LIS344ALH and ADXL103, the combination of gyroscope and accelerometer of ADIS16405 is shown minimum error having around 160 m/s standard deviation of velocity error and around 35 km standard deviation of position error after 600 seconds. Thus, we select the ADIS16405 inertial sensor as a MEMS-based inertial sensor to implement IMU and, the error reducing method is also considered with the search for reference papers.

본 논문에서는 소형 선박용 관성측정장치(Inertial Measurement Unit, IMU) 개발에 적합한 MEMS(Micro-Electro Mechanical System) 기반의 관성 센서 평가와 선정에 관하여 기술했다. 먼저, 오일러 공식에 기초한 관성 센서의 오차 모델과 잡음 모델을 정의하고, 앨런 분산(Allan Variance) 기법과 몬테카르로(Monte Carlo) 시뮬레이션 기법을 도입하여 관성 센서를 평가하였다. ADIS16405, SAR10Z, SAR100Grade100, LIS344ALH, ADXL103 등 다섯 가지 관성 센서에 대한 평가결과, ADIS16405의 자이로와 가속도계를 조합한 경우 오차가 가장 작게 나타났는데, 600 초 경과시 속도 오차의 표준편차가 약 160 m/s, 위치 오차의 표준편차가 약 35 km로 나타났다. 평가를 통해 ADIS16405 관성 센서가 IMU 구축에 최적임을 알았고, 이러한 오차 감소 방법에 대해서 참고문헌을 조사하여 검토하였다.

Keywords

References

  1. Analog Device(2009), ADIS16405 data sheet (URL:http://www.analog.com)
  2. Analog Device(2004), ADXL103/ADXL203 data sheet (URL: http://www.analog.com)
  3. Bennett S. M., Dyott R., Allen D., Brunner J., Kidwell R. and Miller R. (1998), Fiber Optic Rate Gyros As Replacement for Mechanical Gyros, American Institute of Aeronautics and Astronautics, KVH Industries Inc. Report AIAA-98-4401, pp.1-7 (URL: ftp://ftp.uniduisburg. de)
  4. Claudia C. Meruane Naranjo(2008), Analysis and Modeling of MEMS based Inertial Sensors, Thesis Paper of Signal Processing School of Electrical Engineering, ungliga Tekniska Hgskolan, Stockholm, XR-EE-SB 2008:011
  5. Chris Goodall, Naser El-Sheimy and Kai-Wei Chiang(2005), "The Development of a GPS/MEMS INS Integrated System Utilizing a Hybrid Processing Architecture," Proc. of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation, pp.1444-1455
  6. D. H. Titterton and J. L. Weston(2009), Strapdown Inertial Navigation Technology, 2nd Edition, Volume 207 Progress in Astronautics and Aeronautics, pp.57
  7. Eric C. Anderson(1999), Monte Carlo Methods and Importance Sampling, Lecture Notes for Stat 578C, Statistical Genetics (URL: http://ib.berkeley.edu)
  8. Giorgio De Pasquale and Aurelio Soma(2010), "Reliability Testing Procedure for MEMS IMUs Applied to Vibrating Environments," Sensors2010, Vol.10, pp.456-474 https://doi.org/10.3390/s100100456
  9. I. Skog and P. Handel(2006), "Calibration of a MEMS Inertial Measurement Unit," XVII IMEKO WORLD CONGRESS, Brazil, pp.1-6
  10. Jonathan Pengelly(2002), Monte Carlo Methods, Tutorial Materials, pp.1-18 (URL: http://www.cs.otago.ac.nz)
  11. Jonathan Goodman(2011), Lecture Note on the Principles of Scientific Computing, Chapter 9: Monte Carlo methods, pp.183-201 (URL: http://www.cs.nyu. edu)
  12. Kim Mathiassen(2010), A low cost navigation unit for position estimation of personnel after loss of GPS position, Masters of Science degree in Engineering Cybernetics from the Norwegian University of Science and Technology
  13. Martin Vagner(2011), MEMS Gyroscope Performance Comparing Using Allan Variance Method, Doctoral Degree Programme(1), FEEC BUT, (URL:http://www.feec.vutbr.cz)
  14. Mohamed Gad-el-Hak(2006), MEMS Applications, 2nd Edition, Taylor & Francis, pp. 1-1-11-1
  15. Naserel-Sheimy, Eun-Hwan Shin and Xiaojinlu(2006), Kalman Filter Face-Off - Extended vs. Unscented Kalman Filters for Integrated GPS and MEMS Inertial, InsideGNSS March 2006, pp.48-54 (URL: www.insidegnss.com)
  16. Peter Sherman and Steven Holmes(2005), Personal navigation system, Technical report NATRICK/TR-06 /004, Draper Laboratory, Cambridge, MA 02130
  17. Sensonor(2009), SAR10Z Gyro Sensor Series data sheet (URL: http//www.Sensonor.com)
  18. Sensonor(2010), SAR100Grade100 Single-Axis Gyro data sheet (URL: http//www.Sensonor.com)
  19. Songlai Han, Jinling Wang and Nathan Knight(2009), "Using Allan Variance to Determine the Calibration Model of Inertial Sensors for GPS/INS Integration," 6th International Symposium on Mobile Mapping Technology, Presidente Prudente, Sao Paulo, Brazil, pp.1-8
  20. ST Microerectronics(2008), LIS344ALH data sheet (URL: http//www.st.com)
  21. Volker Kempe(2011), Inertial MEMS Principles and Practice, Cambridge University Press, pp.1-452
  22. Walid Abdel-Hamid(2005), Accuracy Enhancement of Integrated MEMS-IMU/GPS Systems for Land Vehicular Navigation Applications, UCGE Reports Number 20207, Thesis for PhD. Department of Geomatics Eng., Calgary, Alberta, Canada