DOI QR코드

DOI QR Code

Effect of Heat Treatment Environment on the Properties of Cold Sprayed Cu-15 at.%Ga Coating Material for Sputtering Target

스퍼터링 타겟용 저온 분사 Cu-15 at.%Ga 코팅 소재의 특성에 미치는 열처리 분위기의 영향

  • Received : 2011.09.26
  • Accepted : 2011.11.09
  • Published : 2011.12.28

Abstract

This study attempted to manufacture a Cu-15 at.%Ga coating layer via the cold spray process and investigated the effect of heat treatment environment on the properties of cold sprayed coating material. Three kinds of heat treatment environments, $5%H_2$+argon, pure argon, and vacuum were used in this study. Annealing treatments were conducted at $200{\sim}800^{\circ}C$/1 hr. With the cold sprayed coating layer, pure ${\alpha}$-Cu and small amounts of $Ga_2O_3$ were detected in the XRD, EDS, EPMA analyses. Porosity significantly decreased and hardness also decreased with increasing annealing temperature. The inhomogeneous dendritic microstructure of cold sprayed coating material changed to the homogeneous and dense one (microstructural evolution) with annealing heat treatment. Oxides near the interface of particles could be reduced by heat treatment especially in vacuum and argon environments. Vacuum environment during heat treatment was suggested to be most effective one to improve the densification and purification properties of cold sprayed Cu-15 at.%Ga coating material.

Keywords

References

  1. M. Kaelin, D. Rudmann, F. Kurdesau, T. Meyer, H.Zogg and A. N. Tiwari: Thin Solid Films, 431 (2003) 58. https://doi.org/10.1016/S0040-6090(03)00194-9
  2. M. Nouiri, Z. B. Ayadi, K. Khirouni, S. Alaya, K. Djessas and S. Yapi: Mater. Sci. Eng. C, 27 (2007) 1002. https://doi.org/10.1016/j.msec.2006.07.022
  3. K. Sakurai, R. Hunger, N. Tsuchimochi, T. Baba, K. Matsubara, P. Fons, A. Yamada, T. Kojima, T. Deguchi, H. Nadanishi and S. Niki: Thin Solid Films, 431 (2003) 6. https://doi.org/10.1016/S0040-6090(03)00226-8
  4. T. Nakano, T. Suzuki, N. Ohnuki and S. Baba: Thin Solid Films, 334 (1998) 192. https://doi.org/10.1016/S0040-6090(98)01142-0
  5. J. W. Lim, J. W. Bae, Y. F. Zhu, S. Lee, K. Mimura and M. Isshiki: Surf. Coat. Technol., 201 (2006) 1899. https://doi.org/10.1016/j.surfcoat.2006.01.009
  6. J. Sarkar, P. McDonald and P. Gilman: Thin Solid Films, 517 (2009)1970. https://doi.org/10.1016/j.tsf.2008.10.065
  7. K. S. Cho, I. B. Song, M. H. Chang, J. H. Yun, M. H. Oh, J. K. Hong and N. K. Park: J. Korean Powder Metall Inst., 17 (2010) 365. https://doi.org/10.4150/KPMI.2010.17.5.365
  8. G. Bertrand, S. Deleonibus, B. Previtali, G. Guegan, X. Jehl, M. Sanquer and F. Balestra: Solid-State Electron, 48 (2004) 505. https://doi.org/10.1016/j.sse.2003.09.026
  9. M. Moriyama, T. Morita, S. Tsukimoto, M. Shimada and M. Murakami: Mater. Trans., 46 (2005) 1036 . https://doi.org/10.2320/matertrans.46.1036
  10. K. J. Kardokus, C. T. Wu, Parfeniuk, L Chrstopher and E. B. Jane: U.S. Patent 6, 645,427. Nov. 11, 2003 "Copper Sputtering Target Assembly and Method of Making same".
  11. C. F. Lo, P. Mcdonald, D. Draper and P. Gilman: J. Eelectro. Mater., 34 (2005) 1468. https://doi.org/10.1007/s11664-005-0152-z
  12. H. Thomasv and V. Steenkiste: Key Engineering Materials., 197 (2001) 59. https://doi.org/10.4028/www.scientific.net/KEM.197.59
  13. J. H. Cho, Y. M. Jin, D. Y. Park, H. J. Kim, I. H. Oh and K. A. Lee: Met. Mater. Int., 17 (2011) 157. https://doi.org/10.1007/s12540-011-0222-0
  14. Y. M. Jin, J. H. Cho, D. Y. Park, J. H. Kim and K. A. Lee: J. Therm. Spray Techn., 20 (2011) 497. https://doi.org/10.1007/s11666-010-9552-6
  15. Y. M. Jin, D. Y. Park, H. J. Kim, I. H. Oh and K. A. Lee: Met. Mater. Int., in press.
  16. S. H. Kwon, D. Y. Park, H. J. Kim and K. A. Lee: J. Kor. Inst. Met. & Mater., 45 (2007) 216.
  17. W. Kroemmer, P. Heinrich and P. Richter: Thermal Spray 2003, B. R. Marple and C. Moreau: Ed., ASM International, Orlando, FL, USA, (2003) 97.
  18. J. Haynes and J. Karthikeyan: Thermal Spray 2003, B. R. Marple and C. Moreau: Ed., ASM International, Orlando, FL, USA, (2003) 97.
  19. S. H. Chang, J. C. Choi, S. W. Choi and I. H. Oh: Kor. J. Mater. Res., 18 (2008) 181. https://doi.org/10.3740/MRSK.2008.18.4.181
  20. B. Gabbitas, P. Cao, S. Raynova and D. L. Zhang: Maters. Sci. Forum., 534 (2007) 805.
  21. T. Stoltenhoff, C. Borchers, F. Grtner and H. Kreye: Surf. Coat. Tech., 200 (2006) 4947. https://doi.org/10.1016/j.surfcoat.2005.05.011
  22. W. L. Li, C. J. Li and H. L. Liao: J. Therm. Spray. Techn., 15 (2006) 1059.
  23. S. J. Hong and C. Suryanarayana: J. Applied Physics., 96 (2004) 6120. https://doi.org/10.1063/1.1808243

Cited by

  1. Effect of Heat Treatment Environment on the Densification of Cold Sprayed Ti Coating Layer vol.19, pp.2, 2012, https://doi.org/10.4150/KPMI.2012.19.2.110
  2. Manufacturing and Properties of CGI-based Composite Coating Layer Utilizing a Warm Spray Process and Cu-Ga and Cu-In Mixed Powders vol.21, pp.3, 2014, https://doi.org/10.4150/KPMI.2014.21.3.229
  3. Manufacturing of Cu Repair Coating Material Using the Kinetic Spray Process and Changes in the Microstructures and Properties by Heat Treatment vol.21, pp.5, 2014, https://doi.org/10.4150/KPMI.2014.21.5.349
  4. Effect of Hot Isostatic Pressing on the Microstructure and Propertiesof Kinetic Sprayed Nb Coating Material vol.23, pp.1, 2016, https://doi.org/10.4150/KPMI.2016.23.1.15
  5. Fabrication and Microstructure/Properties of Bulk-typeTantalum Material by a Kinetic Spray Process vol.23, pp.1, 2016, https://doi.org/10.4150/KPMI.2016.23.1.8