DOI QR코드

DOI QR Code

Influence of oxyfluorination on activated carbon nanofibers for CO2 storage

  • Bai, Byong-Chol (Department of Green Energy Technology, Chungnam National University) ;
  • Kim, Jong-Gu (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Im, Ji-Sun (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Jung, Sang-Chul (Department of Environmental Engineering, Sunchon National University) ;
  • Lee, Young-Seak (Department of Green Energy Technology, Chungnam National University)
  • Received : 2011.08.20
  • Accepted : 2011.11.21
  • Published : 2011.12.30

Abstract

The oxyfluorination effects of activated carbon nanofibers (OFACFs) were investigated for $CO_2$ storage. Electrospun CFs were prepared from a polyacrylonitrile/N,N-dimethylformamide solution via electrospinning and heat treatment. The electrospun CFs were chemically activated in order to generate the pore structure, and then oxyfluorination was used to modify the surface. The samples were labeled CF (electrospun CF), ACF (activated CF), OFACF-1 ($O_2:F_2$ = 7:3), OFACF-2 ($O_2:F_2$ = 5:5) and OFACF-3 ($O_2:F_2$ = 3:7). The functional group of OFACFs was investigated using X-ray photoelectron spectroscopy analysis. The C-F bonds formed on surface of ACFs. The intensities of the C-O peaks increased after oxyfluorination and increased the oxygen content in the reaction gas. The specific surface area, pore volume and pore size of OFACFs were calculated by the Brunauer-Emmett-Teller and density functional theory equation. Through the $N_2$ adsorption isotherm, the specific surface area and pore volume slightly decreased as a result of oxyfluorination treatment. Nevertheless, the $CO_2$ adsorption efficiency of oxyfluorinated ACF improved around 16 wt% due to the semi-ionic interaction effect of surface modificated oxygen functional groups and $CO_2$ molecules.

Keywords

References

  1. Reay DS, Dentener F, Smith P, Grace J, Feely RA. Global nitrogen deposition and carbon sinks. Nature Geosci, 1, 430 (2008). http://dx.doi.org/10.1038/ngeo230.
  2. International Energy Agency. Tracking Industrial Energy Efficiency and $CO_2$ Emissions: In Support of the G8 Plan of Action: Energy Indicators, International Energy Agency, Paris, France (2007).
  3. Aaron D, Tsouris C. Separation of $CO_2$ from flue gas: a review. Sep Sci Technol, 40, 321 (2005). http://dx.doi.org/10.1081/ss-200042244.
  4. Meng L, Cho KS, Park SJ. $CO_2$ adsorption of amine functionalized activated carbons. Carbon Lett, 10, 221 (2009). https://doi.org/10.5714/CL.2009.10.3.221
  5. Meng L, Cho KS, Park SJ. Effect of heat treatment on $CO_2$ adsorption of ammonized graphite nanofibers. Carbon Lett, 11, 34 (2010). https://doi.org/10.5714/CL.2010.11.1.034
  6. Kim BJ, Cho KS, Park SJ. Copper oxide-decorated porous carbons for carbon dioxide adsorption behaviors. J Colloid Interface Sci, 342, 575 (2010). http://dx.doi.org/10.1016/j.jcis.2009.10.045.
  7. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I. Progress in carbon dioxide separation and capture: a review. J Environ Sci, 20, 14 (2008). http://dx.doi.org/10.1016/s1001-0742(08)60002-9.
  8. Chatti R, Bansiwal AK, Thote JA, Kumar V, Jadhav P, Lokhande SK, Biniwale RB, Labhsetwar NK, Rayalu SS. Amine loaded zeolites for carbon dioxide capture: amine loading and adsorption studies. Microporous Mesoporous Mater, 121, 84 (2009). http://dx.doi.org/10.1016/j.micromeso.2009.01.007.
  9. Caixin L, Lei Z, Jiguang D, Qing M, Hongxing D, Hong H. Surfactant-aided hydrothermal synthesis and carbon dioxide adsorption behavior of three-dimensionally mesoporous calcium oxide singlecrystallites with tri-, tetra-, and hexagonal morphologies. J Phys Chem C, 112, 19248 (2008). http://dx.doi.org/10.1021/jp8064568.
  10. Plaza MG, Pevida C, Arias B, Fermoso J, Arenillas A, Rubiera F, Pis JJ. Application of thermogravimetric analysis to the evaluation of aminated solid sorbents for $CO_2$ capture. J Therm Anal Calorim, 92, 601 (2008). http://dx.doi.org/10.1007/s10973-007-8493-x.
  11. Siriwardane RV, Shen MS, Fisher EP, Poston JA. Adsorption of $CO_2$ on molecular sieves and activated carbon. Energy Fuels, 15, 279 (2001). http://dx.doi.org/10.1021/ef000241s.
  12. Tenney CM, Lastoskie CM. Molecular simulation of carbon dioxide adsorption in chemically and structurally heterogeneous porous carbons. Environ Prog, 25, 343 (2006). http://dx.doi.org/10.1002/ep.10168.
  13. Moon SH, Shim JW. A novel process for $CO_2/CH4$ gas separation on activated carbon fibers-electric swing adsorption. J Colloid Interface Sci, 298, 523 (2006). http://dx.doi.org/10.1016/j.jcis.2005.12.052.
  14. Hu YH, Ruckenstein E. Applicability of Dubinin-Astakhov equation to $CO_2$ adsorption on single-walled carbon nanotubes. Chem Phys Lett, 425, 306 (2006). http://dx.doi.org/10.1016/j.cplett.2006.05.059.
  15. Zhao XB, Xiao B, Fletcher AJ, Thomas KM. Hydrogen adsorption on functionalized nanoporous activated carbons. J Phys Chem B, 109, 8880 (2005). http://dx.doi.org/10.1021/jp050080z.
  16. Celzard A, Perrin A, Albiniak A, Broniek E, Mareche JF. The effect of wetting on pore texture and methane storage ability of NaOH activated anthracite. Fuel, 86, 287 (2007). http://dx.doi.org/10.1016/j.fuel.2006.05.033.
  17. Chingombe P, Saha B, Wakeman RJ. Surface modification and characterisation of a coal-based activated carbon. Carbon, 43, 3132 (2005). http://dx.doi.org/10.1016/j.carbon.2005.06.021.
  18. Touhara H, Okino F. Property control of carbon materials by fluorination. Carbon, 38, 241 (2000). http://dx.doi.org/10.1016/s0008-6223(99)00140-2.
  19. Lee YS. Syntheses and properties of fluorinated carbon materials. J Fluorine Chem, 128, 392 (2007). http://dx.doi.org/10.1016/j.jfluchem.2006.11.014.
  20. Tressaud A, Durand E, Labrugere C. Surface modification of several carbon-based materials: comparison between CF4 rf plasma and direct F2-gas fluorination routes. J Fluorine Chem, 125, 1639 (2004). http://dx.doi.org/10.1016/j.jfluchem.2004.09.022.
  21. Lee YS, Lee BK. Surface properties of oxyfluorinated PAN-based carbon fibers. Carbon, 40, 2461 (2002). http://dx.doi.org/10.1016/s0008-6223(02)00152-5.
  22. Lee YS, Kim YH, Hong JS, Suh JK, Cho GJ. The adsorption properties of surface modified activated carbon fibers for hydrogen storages. Catal Today, 120, 420 (2007). http://dx.doi.org/10.1016/j.cattod.2006.09.014.
  23. Im JS, Park SJ, Kim T, Lee YS. Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers. Int J Hydrogen Energy, 34, 3382 (2009). http://dx.doi.org/10.1016/j.ijhydene.2009.02.047.
  24. Im JS, Yun J, Lim YM, Kim HI, Lee YS. Fluorination of electrospun hydrogel fibers for a controlled release drug delivery system. Acta Biomater, 6, 102 (2010). http://dx.doi.org/10.1016/j.actbio.2009.06.017.
  25. Im JS, Park SJ, Lee YS. Preparation and characteristics of electrospun activated carbon materials having meso- and macropores. J Colloid Interface Sci, 314, 32 (2007). http://dx.doi.org/10.1016/j.jcis.2007.05.033.
  26. Im JS, Park SJ, Lee YS. The metal-carbon-fluorine system for improving hydrogen storage by using metal and fluorine with different levels of electronegativity. Int J Hydrogen Energy, 34, 1423 (2009). http://dx.doi.org/10.1016/j.ijhydene.2008.11.054.
  27. Ho KKC, Lee AF, Bismarck A. Fluorination of carbon fibres in atmospheric plasma. Carbon, 45, 775 (2007). http://dx.doi.org/10.1016/j.carbon.2006.11.015.
  28. Bismarck A, Tahhan R, Springer J, Schulz A, Klapotke TM, Zell H, Michaeli W. Influence of fluorination on the properties of carbon fibres. J Fluorine Chem, 84, 127 (1997). http://dx.doi.org/10.1016/S0022-1139(97)00029-8.
  29. Tressaud A, Durand E, Labrugere C, Kharitonov AP, Kharitonova LN. Modification of surface properties of carbon-based and polymeric materials through fluorination routes: from fundamental research to industrial applications. J Fluorine Chem, 128, 378 (2007). http://dx.doi.org/10.1016/j.jfluchem.2006.12.015.
  30. Park SJ, Kim BJ. Ammonia removal of activated carbon fibers produced by oxyfluorination. J Colloid Interface Sci, 291, 597 (2005). http://dx.doi.org/10.1016/j.jcis.2005.05.012.
  31. Chamssedine F, Claves D. Selective substitution of fluorine atoms grafted to the surface of carbon nanotubes and application to an oxyfluorination strategy. Carbon, 46, 957 (2008). http://dx.doi.org/10.1016/j.carbon.2008.03.001.
  32. Kauffman DR, Sorescu DC, Schofield DP, Allen BL, Jordan KD, Star A. Understanding the sensor response of metal-decorated carbon nanotubes. Nano Lett, 10, 958 (2010). http://dx.doi.org/10.1021/nl903888c.
  33. Xu B, Wang X, Lu Y. Surface modification of polyacrylonitrilebased carbon fiber and its interaction with imide. Appl Surf Sci, 253, 2695 (2006). http://dx.doi.org/10.1016/j.apsusc.2006.05.044.
  34. Crassous I, Groult H, Lantelme F, Devilliers D, Tressaud A, Labrugere C, Dubois M, Belhomme C, Colisson A, Morel B. Study of the fluorination of carbon anode in molten KF-2HF by XPS and NMR investigations. J Fluorine Chem, 130, 1080 (2009). http://dx.doi.org/10.1016/j.jfluchem.2009.07.022.
  35. Ma K, Chen P, Wang B, Cui G, Xu X. A study of the effect of oxygen plasma treatment on the interfacial properties of carbon fiber/epoxy composites. J Appl Polym Sci, 118, 1606 (2010). http://dx.doi.org/10.1002/app.32549.
  36. Gregg SJ, Sing KSW. Adsorption, Surface Area, and Porosity. 2nd ed., Academic Press, London (1982).
  37. Im JS, Woo SW, Jung MJ, Lee YS. Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst. J Colloid Interface Sci, 327, 115 (2008). http://dx.doi.org/10.1016/j.jcis.2008.08.030.
  38. Ravikovitch PI, Neimark AV. Characterization of nanoporous materials from adsorption and desorption isotherms. Colloids Surf A: Physicochem Eng Aspects, 187-188, 11 (2001). http://dx.doi.org/10.1016/s0927-7757(01)00614-8.
  39. Celzard A, Albiniak A, Jasienko-Halat M, Mareche JF, Furdin G. Methane storage capacities and pore textures of active carbons undergoing mechanical densification. Carbon, 43, 1990 (2005). http://dx.doi.org/10.1016/j.carbon.2005.03.022.
  40. Yeon SH, Osswald S, Gogotsi Y, Singer JP, Simmons JM, Fischer JE, Lillo-Rodenas MA, Linares-Solano A. Enhanced methane storage of chemically and physically activated carbide-derived carbon. J Power Sources, 191, 560 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.02.019.
  41. Im JS, Park SJ, Kim TJ, Kim YH, Lee YS. The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. J Colloid Interface Sci, 318, 42 (2008). http://dx.doi.org/10.1016/j.jcis.2007.10.024.

Cited by

  1. A hybrid gas-sensing material based on porous carbon fibers and a TiO2 photocatalyst vol.48, pp.23, 2013, https://doi.org/10.1007/s10853-013-7645-6
  2. Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications vol.15, pp.2, 2014, https://doi.org/10.5714/CL.2014.15.2.089
  3. Preparation of novolac-type phenol-based activated carbon with a hierarchical pore structure and its electric double-layer capacitor performance vol.15, pp.3, 2014, https://doi.org/10.5714/CL.2014.15.3.192
  4. capture and new development trends vol.7, pp.11, 2014, https://doi.org/10.1039/C4EE01647E