Preparation and Polarization Properties of Poly(vinyl alcohol) Polarizing Film Using the Mixed System of Supercritical $CO_2$/Organic Solvents/Dichroic Dye

초임계 탄산가스/유기용매/이색성 염료의 혼합계를 이용한 폴리(비닐 알코올) 편광필름의 제조 및 편광특성

  • Park, Ki-Sang (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Choi, E-Joon (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Chang, Jin-Ho (Department of Materials Design Engineering, Kumoh National Institute of Technology) ;
  • Park, Il-Hyun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 박기상 (금오공과대학교 고분자공학과) ;
  • 최이준 (금오공과대학교 고분자공학과) ;
  • 장진호 (금오공과대학교 소재디자인공학과) ;
  • 박일현 (금오공과대학교 고분자공학과)
  • Received : 2011.03.10
  • Accepted : 2011.05.05
  • Published : 2011.09.25

Abstract

In the mixed system of supercritical carbon dioxide/organic solvents, poly(vinyl alcohol)(PVA) film of high degree of hydrolysis could be dyed with a dichroic dye of C. I. direct black 22(DB22) and as a result, high durability was obtained. Especially, as a dye dispersant in a supercritical fluid phase, a mixed solvent system of ethylene glycol: dimethyl sulfoxide=4 : 6 weight ratio was investigated. Then the optimum pressure for dyeing could be reduced down to 200 bar. Using this supercritical fluid system, the maximum dyeing appeared as the transmittance of less than 1% and the waste amount was reduced to the level of 1/10. After 500% drawing of this PVA film, both the polarizing efficiency of 94% and the single piece transmittance of 30% were obtained. The limitation of DB22 and further improvements were also discussed.

초임계 탄산가스/유기용매 혼합계 상에서 이색성 염료인 C. I. direct black 22(DB22)로 고검화도의 폴리(비닐 알코올)(PVA)을 염색하여 내구성이 강한 편광필름을 제조하였다. 특히, 초임계 탄산가스 상으로 이색성 염료를 녹이기 위한 분산제로 에틸렌 글리콜과 디메틸 설폭사이드의 무게비=4 : 6의 혼합용매계를 사용하였을 때 염색 압력을 200 bar까지 낮출 수 있었다. 초임계 유체계의 사용으로, 최대 염색은 연신 전 투과도로 1% 미만까지, 폐수 발생량은 1/10 수준까지, 감소가 가능하였고, 이와 같이 염색된 PVA 필름을 500% 연신한 후 측정된 편광효율은 94%, 평균 투과도(single piece transmittance)는 30%로 각각 얻어졌으며, 또한 이색성 염료로서의 DB22의 한계 및 개선 방안 등도 검토하였다.

Keywords

Acknowledgement

Supported by : 금오공과대학교

References

  1. C. A. Finch, Poly(vinyl alcohol): Developments, John Wiley, New York, 1992.
  2. J. P. Kim and D. H. Song, Polym. Sci. Technol.(Korea), 15, 31 (2004).
  3. E. J. Shim, W. S. Lyoo, and Y. H. Lee, J. Appl. Polym. Sci., 109, 1143 (2008). https://doi.org/10.1002/app.28181
  4. W. S. Lyoo, J. H. Yeum, H. D. Ghim, J. M. Park, S. J. Lee, and J. H. Kim, Colloid Polym. Sci., 281, 416, (2003). https://doi.org/10.1007/s00396-002-0788-7
  5. Y. Dirix, T. A. Tervoort, and C. Bastiaansen, Macromolecules, 28, 486 (1995). https://doi.org/10.1021/ma00106a011
  6. Y. Dirix, T. A. Tervoort, and C. Bastiaansen, Macromolecules, 30, 2175 (1997). https://doi.org/10.1021/ma960808x
  7. E. Beekman, C. Kocher, A. Kokil, S. Zimmermann, and C. Weder, J. Appl. Polym. Sci., 86, 1235 (2002). https://doi.org/10.1002/app.11067
  8. S. E. Han and I. S. Hwang, J. Polym. Sci. Part B: Polym. Phys., 40, 1363 (2002). https://doi.org/10.1002/polb.10198
  9. W. S. Lyoo, J. H. Yeum, J. M. Park, J. W. Kwak, J. H. Kim, S. S. Kim, B. C. Ji, and S. K. Noh, J. Appl. Polym. Sci., 96, 967 (2005). https://doi.org/10.1002/app.20642
  10. S. Y. Oh and D. Y. Shin, J. Korean Ind. Chem., 11, 426 (2000).
  11. S. Y. Oh, J. H. Oh, and D. Y. Shin, J. Korean Inst. Chem. Eng., 39, 411 (2001).
  12. D. H. Song, H. Y. Yoo, and J. P. Kim, Dyes and Pigments, 75, 727 (2007). https://doi.org/10.1016/j.dyepig.2006.07.025
  13. D. H. Song and J. P. Kim, Dyes and Pigments, 80, 219 (2007).
  14. J. B. Chang, J. H. Hwang, J. S. Park, and J. P. Kim, Dyes and Pigments, 88, 366 (2011). https://doi.org/10.1016/j.dyepig.2010.08.007
  15. E. Schollmeyer, D. Knittel, H.-J. Buschmann, G. M. Schneider, and K. Poulakis, DE3906724(Deutsches Textilforschungzentum, Germany; 1990).
  16. D. Knittel, W. Saus, and E. Schollmeyer, J. Text. Inst., 84, 534 (1993). https://doi.org/10.1080/00405009308658986
  17. E. Bach, E. Cleve, and E. Schollmeyer, Rev. Prog. Color, 32, 88 (2002). https://doi.org/10.1111/j.1478-4408.2002.tb00253.x
  18. M. Rita D. Giorgi, E. Cadoni, D. Maricca, and A. Piras, Dyes and Pigments, 45, 75 (2000). https://doi.org/10.1016/S0143-7208(00)00011-5
  19. S. Sicardi, L. Manna, and M. Banchero, J. Supercrit. Fluids, 17, 187 (2000). https://doi.org/10.1016/S0896-8446(99)00055-8
  20. P. Bao and J. Dai, J. Chem. Eng. Data, 50, 838 (2005). https://doi.org/10.1021/je0496847
  21. O. S. Fleming, S. G. Kazarian, E. Bach, and E. Schollmeyer, Polymer, 46, 2943 (2005). https://doi.org/10.1016/j.polymer.2005.02.067
  22. A. Ferri, M. Banchero, and S. Sicardi, J. Supercrit. Fluids, 37, 107 (2006). https://doi.org/10.1016/j.supflu.2005.07.001
  23. M. van der Kraan, M. V. Fernandez Cid, G. F. Woerlee, W. J. T. Veugelers, and G. J. Witkamp, J. Supercrit. Fluids, 40, 470 (2007). https://doi.org/10.1016/j.supflu.2006.07.019
  24. S. B. Park, Development of Advanced Optical Polymers for Next Generation Display, Korea Institute for Advancement of Technology, 2005.
  25. D. W. Ovenall, Macromolecules, 17, 1458 (1984). https://doi.org/10.1021/ma00138a008
  26. C. F. Kirby and M. A. McHugh, Chem. Rev., 99, 565 (1999). https://doi.org/10.1021/cr970046j
  27. L. H. Sperling, Introduction to Physical Polymer Science, 4th ed., Wiley, New York, p 411 (2005).