DOI QR코드

DOI QR Code

Evaluation of Na2CO3-H2O2 Carbonate Solution Stability

Na2CO3-H2O2 탄산염 용액의 안정성 평가

  • Received : 2011.04.14
  • Accepted : 2011.06.29
  • Published : 2011.09.30

Abstract

This study was carried out to examine the stability of $Na_2CO_3-H_2O_2$ carbonate solution with aging time in the dissolving solution after oxidative dissolution of U by a carbonate solution, the Cs/Re filtrate after selective precipitation of Cs and Re (as a surrogate for Tc), and the acidification filtrate after precipitation of U by acidification, respectively. The compositions of dissolving solution were not changed with ageing time, and the selective precipitation of Re and Cs was also not affected without regard to the aging time of dissolving solution. The successive removal of Cs and Re from a carbonate dissolving solution was possible. However, the recovery yield of U by acidification was decreased with increasing the aging time of the dissolving solution and the Cs/Re-filtrate, respectively, because U was converted from the uranyl peroxocarbonato complex to the uranyltricarbonate in the solution aged for a long time. Accordingly, it is effective that a dissolving solution and a Cs/Re filtrate are treated within the aging of 7 days, respectively, in order to recover U more than 99%. On the other hand, the recovery of U was carried out in order of the oxidative dissolution of U selective precipitation of Re and Cs precipitation of U by acidification. Almost all of U and a part of FP were co-dissolved in oxidative dissolution step. Over 99% of Re and Cs from the FP co-dissolved with U could be removed by a TPPCl (tetraphenylphosphonium chloride) and a NaTPB (sodium tetraphenylborate), respectively. U was precipitated nearly 100% by acidification to pH 4. Therefore, it was confirmed that the validity of recovery of U by precipitation methods from a SF (spent fuel) in the $Na_2CO_3-H_2O_2$ solution.

연구는 $Na_2CO_3-H_2O_2$ 탄산염 용액의 숙성시간에 따른 안정성을 U의 산화 용해액, Cs/Re의 선택적 침전 여과액 및 U의 산성화 침전 여과액으로 구분하여 검토하였다. 숙성시간에 따른 산화 용해액 내 조성 변화는 거의 없었으며, Cs/Re의 선택적 침전에도 아무 영향이 없이 산화 용해액으로부터 순차적으로 Re과 Cs의 침전제거가 가능하였다. 그러나 U의 산성화 침전에서는 산화 용해액이나 Cs/Re의 선택적 침전 여과액을 장시간 동안 숙성시킬 경우 U이 uranyl peroxocarbonato complex에서 uranyltricarbonate로 일부 전환되어 U의 침전회수를 감소시켰다. 그러므로 99% 이상의 U을 회수하기 위해서는 산화 용해액 및 Cs/Re의 선택적 침전 여과액의 숙성시간을 각각 7일 이내에서 처리하는 것이 효과적이다. 그리고 SF 의 산화/용해${\rightarrow}$Cs과 Re(/Tc)의 선택적 침전${\rightarrow}$ U의 산성화 침전 등을 순차적으로 수행하여, 산화/용해에서는 대부분의 U과 FP 중 일부가 함께 용해 되었으며, 함께 용해된 FP 중 Re과 Cs은 각각 TPPCl 및 NaTPB로 99% 이상을 침전제거할 수 있었다. 그리고 산성화 (pH 4) 침전에서는 U을 거의 100% 침전회수 하여 $Na_2CO_3-H_2O_2$ 탄산염 용액에서 침전법으로 SF로부터 U 만의 회수 타당성을 확인하였다.

Keywords

References

  1. Report to Congress, "DOE Spent Nuclear fuel recycling program plan", US Department of Energy, (2006).
  2. "The challenges and directions for nuclear energy policy in Japan, Japan's nuclear energy national plan", Ministry of Economy, Trade and Industry (METI), Japan (2006).
  3. K. W. Kim, J. K. Lim, D. Y. Chung, H. B. Yang, K. C. Song, K. Y. Jee and E. H. Lee, "A process for the recovery of uranium from spent nuclear fuel by using a high alkaline carbonate solution", Korea Patent Application No. 38599 (2008).
  4. K. W. Kim, J. K. Lim, D. Y. Chung, H. B. Yang, K. C. Song, K. Y. Jee and E. H. Lee, "A process for recovering isolated uranium from spent nuclear fuel using a highly alkaline carbonate solution", US Patent Application No. 12/337599 (2008).
  5. K. W. Kim, D. Y. Chung, H. B. Yang, J. K. Lim, E. H. Lee, K. C. Song and K. S. Song, "A conceptual process study for recovery of uranium alone from spent nuclear fuel by using high alkaline carbonate media", Nucl. Tech., 166, pp. 170-179 (2009).
  6. E. H. Lee, J. K. Lim, D. Y. Chung, H. B. Yang, J. H. Yoo and K. W. Kim, "Selective removal of Cs and Tc by precipitation from the simulated FP co-dissolved with U in $Na_2CO_3-H_2O_2$ solution", J. Radioanal. Nucl. Chem. 284 (2), pp. 387 (2010). https://doi.org/10.1007/s10967-010-0523-7
  7. K. W. Kim, Y. H. Kim, S. Y. Lee, E. H. Lee, K. C. Song and K. Song, "Study on Electrolytic recoveries of carbonate salt and uranium from a uranyl peroxo carbonato complex solution generated from a carbonate leaching process", Ind. Eng. Chem. Res. 48. pp. 2085-2092 (2009). https://doi.org/10.1021/ie800990r
  8. K. W. Kim, Y. H. Kim, S. Y. Lee, J. W. Lee, K. S. Joe, E. H. Lee, J. S. Kim, K. Song and K. C. Song, "Precipitation characteristics of uranyl ion at different pHs depending on the presence of carbonate ions and hydrogen peroxides", Environmental Sci. Tech., 43. pp. 2355-2361 (2009). https://doi.org/10.1021/es802951b
  9. S. M. Peper, L. F. Brodnax, S. E. Field, R. A. Zehnder, S. N. Valdez and W. H. Runde, "Kinetic study of the oxidative dissolution of $UO_2$ in aqueous carbonate media", Ind. Eng. Chem. Res., 43, pp. 8188-8193 (2004). https://doi.org/10.1021/ie049457y
  10. G. S. Goff, I. F. Brodnax, M. R. Cisneros, S. M. Peper, S. E. Field, R. A. Zender, N. V. Scott and W. Rende, "First identification and thermodynamic characterization of the ternary U(VI) species, $UO_2(O_2)(CO_3)_2^{2-}\;in\;UO_2-H_2O_2-K_2CO_3$ solutions", Inorg. Chem., 47, pp. 1984-1990 (2008) https://doi.org/10.1021/ic701775g
  11. F. Clarens, J. de Pablo, I. Casa, J. Gimenez, M. Rovira, J. Merino, E. Cera, J. Bruno, J. Quinones and A.M. Esparza, "The oxidative dissolution of unirradiated $UO_2$ by hydrogen peroxide as a function of pH", J. Nucl. Mater., 35, pp. 225-231 (2005).
  12. S. Rollin, K. Spahiu and U.B. Eklund, "Determination of dissolution rates of spent fuel in carbonate solutions under different redox conditions with a flow-through experiment", J. Nucl. Mater., 297, pp. 231-243 (2001). https://doi.org/10.1016/S0022-3115(01)00645-6
  13. D. L. Clark, D. E. Hobart and M. P. Neu, "Actinide carbonate complexes and their importance in actinide environmental chemistry", Chem. Rev. 95, pp. 25-48 (1995). https://doi.org/10.1021/cr00033a002
  14. E. H. Lee, J. G. Lim, D. Y. Chung, H. B. Yang, J. H. Yoo and K. W. Kim, "The oxidative dissolution behaviors of fission products in a $Na_2CO_3-H_2O_2$ solution", J. Radioanal. Nucl. Chem., 281, pp. 339-346 (2009). https://doi.org/10.1007/s10967-009-0018-6
  15. E. H. Lee, J. G. Lim, D. Y. Chung, H. B. Yang, J. H. Yoo and K. W. Kim, "The characteristics of an oxidative dissolution of simulated fission product oxides in $(NH_4)_2CO_3$ solution containing $H_2O_2$", J. Korean Radioactive Waste Soc., 7(2), pp. 93-100 (2009).
  16. E. H. Lee, J. G. Lim, D. Y. Chung, H. B. Yang and K. W. Kim, "Precipitation behaviors of Cs and Re(/Tc) by NaTPB and TPPCl from a simulated fission products-$(Na_2CO_3-NaHCO_3)-H_2O_2$ solution", J. Korean Radioactive Waste Soc., 8(2), pp. 115-122 (2010).
  17. Y. Kondo, M. Kubota, T. Abe and K. Nagato, "Development of partitioning method : Recovery and Utilization of useful elements in SF (Literature survey)", JAERI-M 91-147, (1991).
  18. Y. Asano, N. Asanuma, T. Ito, M. Kataoka, S. Fujino, T. Yamamura, W. Sugiyama, and H. Tomiyasu, "Study on a nuclear fuel reprocessing system based on the precipitation method in mild aqueous solutions", Nucl. Tech., 120, pp. 198-210 (1997).
  19. N. Asanuma, M. Harada, Y. Ikeda, and H. Tomiyasu, "New approach to nuclear fuel reprocessing in non-acidic aqueous solutions", J. Nucl. Sci. Tech., 38(10), pp. 866-871 (2001). https://doi.org/10.1080/18811248.2001.9715107
  20. G. W. Leddicotte, "The radiochemistry of Rhenium", Oak Ridge National Laboratory, National Academy of Sciences-National Research Council, (1961).
  21. J. A. Dean, "Lange's Handbook of Chemistry", 12th Edition, McGraw-Hill Book Company, (1979).
  22. I. Grenthe, J. Fuger, R. J. M. Konigs, R. J. Lemire, A. B. Muller. C. N. Trung and H. Wanner, "Thermodynamics of uranium", Elsevier Science Publishing Company Inc., Amsterdam, (1992).
  23. C. F. Baes, Jr. and R. E. Mesmer, "The Hydrolysis of Cations", Robert E. Krieger Pub. Company, Malabar, Florida (1986).
  24. P. Debets, "X-ray diffraction data on hydrated uranium peroxide" J. Inorg. Nucl. Chem., 35, pp. 727-730 (1963).

Cited by

  1. 우라늄 함유 석회침전물의 용해 및 침전에 의한 U 제거 vol.10, pp.2, 2012, https://doi.org/10.7733/jkrws.2012.10.2.077